938 resultados para Product-specific model
Resumo:
When variables in time series context are non-negative, such as for volatility, survival time or wave heights, a multiplicative autoregressive model of the type Xt = Xα t−1Vt , 0 ≤ α < 1, t = 1, 2, . . . may give the preferred dependent structure. In this paper, we study the properties of such models and propose methods for parameter estimation. Explicit solutions of the model are obtained in the case of gamma marginal distribution
Resumo:
The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis
Resumo:
Nach 35 Jahren Entwicklungszeit wurde im Jahr 2004 in Shanghai die erste kommerzielle Anwendung des innovativen Magnetbahnsystems Transrapid in Betrieb genommen; in Deutschland konnte bislang keine Transrapid-Strecke realisiert werden, obwohl dieses System entsprechend den Ergebnissen einer vom damaligen Bundesverkehrsminister beauftragten Studie aus dem Jahr 1972 für den Einsatz in Deutschland entwickelt wurde. Beim Transrapid handelt es sich um eine echte Produkt-Innovation im Bahnverkehr und nicht um eine Weiterentwicklung oder Optimierung wie beim ICE, und ist somit als innovativer Verkehrsträger der Zukunft in die langfristige Entwicklung der Verkehrssysteme einzufügen. Die modernen HGV Bahnsysteme (Shinkansen/TGV/ICE) hingegen sind, ähnlich der Clipper in der Phase der Segelschifffahrt im Übergang zum Dampfschiff, letzte Abwehrentwicklungen eines am Zenit angekommenen Schienen-Verkehrssystems. Die Einführung von Innovationen in einen geschlossenen Markt stellt sich als schwierig dar, da sie zu einem Bruch innerhalb eines etablierten Systems führen. Somit wird in der vorliegenden Arbeit im ersten Teil der Themenkomplex Innovation und die Einordnung der Magnet-Schwebe-Technologie in diese langfristig strukturierten Abläufe untersucht und dargestellt. Das Transrapid-Projekt ist demzufolge in eine zeitstrukturelle Zyklizität einzuordnen, die dafür spricht, die Realisierung des Gesamtprojektes in eine Zeitspanne von 20 bis 30 Jahre zu verlagern. Im zweiten Teil wird auf der Basis einer regionalstrukturellen Analyse der Bundesrepublik Deutschland ein mögliches Transrapidnetz entworfen und die in diesem Netz möglichen Reisezeiten simuliert. Weiterhin werden die Veränderungen in den Erreichbarkeiten der einzelnen Regionen aufgrund ihrer Erschließung durch das Transrapidnetz simuliert und grafisch dargestellt. Die vorliegende Analyse der zeitlichen Feinstruktur eines perspektiven Transrapidnetzes ist ein modellhafter Orientierungsrahmen für die Objektivierung von Zeitvorteilen einer abgestimmten Infrastruktur im Vergleich zu real möglichen Reisezeiten innerhalb Deutschlands mit den gegebenen Verkehrsträgern Schiene, Straße, Luft. So würde der Einsatz des Transrapid auf einem entsprechenden eigenständigen Netz die dezentrale Konzentration von Agglomerationen in Deutschland fördern und im Durchschnitt annähernd 1 h kürzere Reisezeiten als mit den aktuellen Verkehrsträgern ermöglichen. Zusätzlich wird noch ein Ausblick über mögliche Realisierungsschritte eines Gesamtnetzes gegeben und die aufgetretenen Schwierigkeiten bei der Einführung des innovativen Verkehrssystems Transrapid dargestellt.
Resumo:
Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.
Resumo:
Organic food is increasingly available in the conventional food retail, where organic products are offered alongside with various other types of products and compete mainly with conventional and the so-called conventional-plus products. The latter are conventional products displaying particular quality attributes on the product packaging, such as ‘no artificial additives’, or ‘from animal welfare husbandry’. Often, these quality attributes also apply to organic products. Occasional organic consumers might prefer such conventional-plus alternatives that are perceived to be ‘between’ organic and conventional products. The overall objective of this PhD thesis was to provide information about the segment of occasional organic consumers. In particular, the thesis focussed on consumer perceptions and attitudes towards the quality of, and preferences for, organic, conventional and conventional-plus products in two countries: Germany and Switzerland. To achieve these objectives, qualitative and quantitative consumer research was combined in order to explore occasional organic consumers’ perceptions and attitudes as well as to observe their preferences and buying behaviour regarding different types of food products: organic, conventional and conventional-plus products. The qualitative research showed that, depending on single criteria, organic production was both positively as well as negatively assessed by consumers. Consumer perception of organic food was found to be highly selective and primarily focussed on the final stage of the particular production process. A major problem is that consumers are still mostly unfamiliar with factors associated with organic production, have a lack of confidence, and often confuse organic with conventional products. Besides this, consumer expectations of organic products are different from the expectations of conventional products. The quantitative research revealed that attitudes strongly determine consumers’ preferences for organic, conventional and conventional-plus products. Consumer attitudes tended to differ more between organic and conventional choices rather than conventional-plus and conventional choices. Furthermore, occasional organic consumers are heterogeneous in their preferences. They can be grouped into two segments: the consumers in one segment were less price sensitive and preferred organic products. The consumers in the other segment were more price sensitive and rather preferred conventional-plus or conventional products. To conclude, given the selective and subjective nature of consumer perception and the strong focus of consumer perception on the final stage of the food production process, specific additional values of organic farming should be communicated in clear and catchy messages. At the same time, these messages should be particularly focussed on the final stage of organic food production. The communication of specific added values in relation with organic products to improve the perceived price-performance-ratio is important since conventional-plus products represent an interesting alternative particularly for price sensitive occasional organic consumers. Besides this, it is important to strengthen affirmative consumer attitudes towards organic production. Therefore, policy support should emphasise on long-term communication campaigns and education programmes to increase the consumer awareness and knowledge of organic food and farming. Since consumers expect that organic food is regionally or at least domestically produced while they less accept organic imports, policy support of domestic and regional producers is a crucial measure to fill the current gap between the increasing consumer demand of organic food and the stagnation of the domestic and regional organic food supply.
Resumo:
To study the behaviour of beam-to-column composite connection more sophisticated finite element models is required, since component model has some severe limitations. In this research a generic finite element model for composite beam-to-column joint with welded connections is developed using current state of the art local modelling. Applying mechanically consistent scaling method, it can provide the constitutive relationship for a plane rectangular macro element with beam-type boundaries. Then, this defined macro element, which preserves local behaviour and allows for the transfer of five independent states between local and global models, can be implemented in high-accuracy frame analysis with the possibility of limit state checks. In order that macro element for scaling method can be used in practical manner, a generic geometry program as a new idea proposed in this study is also developed for this finite element model. With generic programming a set of global geometric variables can be input to generate a specific instance of the connection without much effort. The proposed finite element model generated by this generic programming is validated against testing results from University of Kaiserslautern. Finally, two illustrative examples for applying this macro element approach are presented. In the first example how to obtain the constitutive relationships of macro element is demonstrated. With certain assumptions for typical composite frame the constitutive relationships can be represented by bilinear laws for the macro bending and shear states that are then coupled by a two-dimensional surface law with yield and failure surfaces. In second example a scaling concept that combines sophisticated local models with a frame analysis using a macro element approach is presented as a practical application of this numerical model.
Resumo:
In den letzten Jahrzehnten haben sich makroskalige hydrologische Modelle als wichtige Werkzeuge etabliert um den Zustand der globalen erneuerbaren Süßwasserressourcen flächendeckend bewerten können. Sie werden heutzutage eingesetzt um eine große Bandbreite wissenschaftlicher Fragestellungen zu beantworten, insbesondere hinsichtlich der Auswirkungen anthropogener Einflüsse auf das natürliche Abflussregime oder der Auswirkungen des globalen Wandels und Klimawandels auf die Ressource Wasser. Diese Auswirkungen lassen sich durch verschiedenste wasserbezogene Kenngrößen abschätzen, wie z.B. erneuerbare (Grund-)Wasserressourcen, Hochwasserrisiko, Dürren, Wasserstress und Wasserknappheit. Die Weiterentwicklung makroskaliger hydrologischer Modelle wurde insbesondere durch stetig steigende Rechenkapazitäten begünstigt, aber auch durch die zunehmende Verfügbarkeit von Fernerkundungsdaten und abgeleiteten Datenprodukten, die genutzt werden können, um die Modelle anzutreiben und zu verbessern. Wie alle makro- bis globalskaligen Modellierungsansätze unterliegen makroskalige hydrologische Simulationen erheblichen Unsicherheiten, die (i) auf räumliche Eingabedatensätze, wie z.B. meteorologische Größen oder Landoberflächenparameter, und (ii) im Besonderen auf die (oftmals) vereinfachte Abbildung physikalischer Prozesse im Modell zurückzuführen sind. Angesichts dieser Unsicherheiten ist es unabdingbar, die tatsächliche Anwendbarkeit und Prognosefähigkeit der Modelle unter diversen klimatischen und physiographischen Bedingungen zu überprüfen. Bisher wurden die meisten Evaluierungsstudien jedoch lediglich in wenigen, großen Flusseinzugsgebieten durchgeführt oder fokussierten auf kontinentalen Wasserflüssen. Dies steht im Kontrast zu vielen Anwendungsstudien, deren Analysen und Aussagen auf simulierten Zustandsgrößen und Flüssen in deutlich feinerer räumlicher Auflösung (Gridzelle) basieren. Den Kern der Dissertation bildet eine umfangreiche Evaluierung der generellen Anwendbarkeit des globalen hydrologischen Modells WaterGAP3 für die Simulation von monatlichen Abflussregimen und Niedrig- und Hochwasserabflüssen auf Basis von mehr als 2400 Durchflussmessreihen für den Zeitraum 1958-2010. Die betrachteten Flusseinzugsgebiete repräsentieren ein breites Spektrum klimatischer und physiographischer Bedingungen, die Einzugsgebietsgröße reicht von 3000 bis zu mehreren Millionen Quadratkilometern. Die Modellevaluierung hat dabei zwei Zielsetzungen: Erstens soll die erzielte Modellgüte als Bezugswert dienen gegen den jegliche weiteren Modellverbesserungen verglichen werden können. Zweitens soll eine Methode zur diagnostischen Modellevaluierung entwickelt und getestet werden, die eindeutige Ansatzpunkte zur Modellverbesserung aufzeigen soll, falls die Modellgüte unzureichend ist. Hierzu werden komplementäre Modellgütemaße mit neun Gebietsparametern verknüpft, welche die klimatischen und physiographischen Bedingungen sowie den Grad anthropogener Beeinflussung in den einzelnen Einzugsgebieten quantifizieren. WaterGAP3 erzielt eine mittlere bis hohe Modellgüte für die Simulation von sowohl monatlichen Abflussregimen als auch Niedrig- und Hochwasserabflüssen, jedoch sind für alle betrachteten Modellgütemaße deutliche räumliche Muster erkennbar. Von den neun betrachteten Gebietseigenschaften weisen insbesondere der Ariditätsgrad und die mittlere Gebietsneigung einen starken Einfluss auf die Modellgüte auf. Das Modell tendiert zur Überschätzung des jährlichen Abflussvolumens mit steigender Aridität. Dieses Verhalten ist charakteristisch für makroskalige hydrologische Modelle und ist auf die unzureichende Abbildung von Prozessen der Abflussbildung und –konzentration in wasserlimitierten Gebieten zurückzuführen. In steilen Einzugsgebieten wird eine geringe Modellgüte hinsichtlich der Abbildung von monatlicher Abflussvariabilität und zeitlicher Dynamik festgestellt, die sich auch in der Güte der Niedrig- und Hochwassersimulation widerspiegelt. Diese Beobachtung weist auf notwendige Modellverbesserungen in Bezug auf (i) die Aufteilung des Gesamtabflusses in schnelle und verzögerte Abflusskomponente und (ii) die Berechnung der Fließgeschwindigkeit im Gerinne hin. Die im Rahmen der Dissertation entwickelte Methode zur diagnostischen Modellevaluierung durch Verknüpfung von komplementären Modellgütemaßen und Einzugsgebietseigenschaften wurde exemplarisch am Beispiel des WaterGAP3 Modells erprobt. Die Methode hat sich als effizientes Werkzeug erwiesen, um räumliche Muster in der Modellgüte zu erklären und Defizite in der Modellstruktur zu identifizieren. Die entwickelte Methode ist generell für jedes hydrologische Modell anwendbar. Sie ist jedoch insbesondere für makroskalige Modelle und multi-basin Studien relevant, da sie das Fehlen von feldspezifischen Kenntnissen und gezielten Messkampagnen, auf die üblicherweise in der Einzugsgebietsmodellierung zurückgegriffen wird, teilweise ausgleichen kann.
Resumo:
This thesis describes the development of a model-based vision system that exploits hierarchies of both object structure and object scale. The focus of the research is to use these hierarchies to achieve robust recognition based on effective organization and indexing schemes for model libraries. The goal of the system is to recognize parameterized instances of non-rigid model objects contained in a large knowledge base despite the presence of noise and occlusion. Robustness is achieved by developing a system that can recognize viewed objects that are scaled or mirror-image instances of the known models or that contain components sub-parts with different relative scaling, rotation, or translation than in models. The approach taken in this thesis is to develop an object shape representation that incorporates a component sub-part hierarchy- to allow for efficient and correct indexing into an automatically generated model library as well as for relative parameterization among sub-parts, and a scale hierarchy- to allow for a general to specific recognition procedure. After analysis of the issues and inherent tradeoffs in the recognition process, a system is implemented using a representation based on significant contour curvature changes and a recognition engine based on geometric constraints of feature properties. Examples of the system's performance are given, followed by an analysis of the results. In conclusion, the system's benefits and limitations are presented.
Resumo:
We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
In a recent experiment, Freedman et al. recorded from inferotemporal (IT) and prefrontal cortices (PFC) of monkeys performing a "cat/dog" categorization task (Freedman 2001 and Freedman, Riesenhuber, Poggio, Miller 2001). In this paper we analyze the tuning properties of view-tuned units in our HMAX model of object recognition in cortex (Riesenhuber 1999) using the same paradigm and stimuli as in the experiment. We then compare the simulation results to the monkey inferotemporal neuron population data. We find that view-tuned model IT units that were trained without any explicit category information can show category-related tuning as observed in the experiment. This suggests that the tuning properties of experimental IT neurons might primarily be shaped by bottom-up stimulus-space statistics, with little influence of top-down task-specific information. The population of experimental PFC neurons, on the other hand, shows tuning properties that cannot be explained just by stimulus tuning. These analyses are compatible with a model of object recognition in cortex (Riesenhuber 2000) in which a population of shape-tuned neurons provides a general basis for neurons tuned to different recognition tasks.
Resumo:
The visual recognition of complex movements and actions is crucial for communication and survival in many species. Remarkable sensitivity and robustness of biological motion perception have been demonstrated in psychophysical experiments. In recent years, neurons and cortical areas involved in action recognition have been identified in neurophysiological and imaging studies. However, the detailed neural mechanisms that underlie the recognition of such complex movement patterns remain largely unknown. This paper reviews the experimental results and summarizes them in terms of a biologically plausible neural model. The model is based on the key assumption that action recognition is based on learned prototypical patterns and exploits information from the ventral and the dorsal pathway. The model makes specific predictions that motivate new experiments.
Resumo:
The descriptions below and the attached diagrams are outputs of the 1998 LAI Product Development Focus Team workshop on the Value Chain in Product Development. A working group at that workshop was asked to model the product development process: in terms of the phases of product development and their interfaces, boundaries and outputs. Their work has proven to be generally useful to LAI researchers and industry members, and so is formalized here.
Resumo:
Caches are known to consume up to half of all system power in embedded processors. Co-optimizing performance and power of the cache subsystems is therefore an important step in the design of embedded systems, especially those employing application specific instruction processors. In this project, we propose an analytical cache model that succinctly captures the miss performance of an application over the entire cache parameter space. Unlike exhaustive trace driven simulation, our model requires that the program be simulated once so that a few key characteristics can be obtained. Using these application-dependent characteristics, the model can span the entire cache parameter space consisting of cache sizes, associativity and cache block sizes. In our unified model, we are able to cater for direct-mapped, set and fully associative instruction, data and unified caches. Validation against full trace-driven simulations shows that our model has a high degree of fidelity. Finally, we show how the model can be coupled with a power model for caches such that one can very quickly decide on pareto-optimal performance-power design points for rapid design space exploration.
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
Resumen tomado de la publicaci??n