978 resultados para Prediction algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions. Results: A large dataset comprising MHC-peptide structural complexes was created by remodelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions. Conclusion: The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined computational and experimental polymorph search was undertaken to establish the crystal forms of 7-fluoroisatin, a simple molecule with no reported crystal structures, to evaluate the value of crystal structure prediction studies as an aid to solid form discovery. Three polymorphs were found in a manual crystallisation screen, as well as two solvates. Form I ( P2(1)/c, Z0 1), found from the majority of solvent evaporation experiments, corresponded to the most stable form in the computational search of Z0 1 structures. Form III ( P21/ a, Z0 2) is probably a metastable form, which was only found concomitantly with form I, and has the same dimeric R2 2( 8) hydrogen bonding motif as form I and the majority of the computed low energy structures. However, the most thermodynamically stable polymorph, form II ( P1 , Z0 2), has an expanded four molecule R 4 4( 18) hydrogen bonding motif, which could not have been found within the routine computational study. The computed relative energies of the three forms are not in accord with experimental results. Thus, the experimental finding of three crystalline polymorphs of 7- fluoroisatin illustrates the many challenges for computational screening to be a tool for the experimental crystal engineer, in contrast to the results for an analogous investigation of 5- fluoroisatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three lowest (1(2)A('), 2(2)A('), and 1(2)A(')) potential-energy surfaces of the C2Cl radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the (CCCl)-C-12-C-12-Cl-35 isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first three electronic states (1(2)A', 2(2)A', 1(2)A '') of the C2Br radical, correlating at linear geometries with (2)Sigma(+) and (2)Pi states, have been studied ab initio, using Multi Reference Configuration Interaction techniques. The electronic ground state is found to have a bent equilibrium geometry, R-CC = 1.2621 angstrom, R-CBr = 1.7967 angstrom, < CCBr 156.1 degrees, with a very low barrier to linearity. Similarly to the valence isoelectronic radicals C2F and C2Cl, this anomalous behaviour is attributed to a strong three-state non-adiabatic electronic interaction. The Sigma, Pi(1/2), Pi(3/2) vibronic energy levels and their absolute infrared absorption intensities at a temperature of 5K have been calculated for the (CCBr)-C-12-C-12-Br-79 isotopomer, to an upper limit of 2000 cm(-1), using ab initio diabatic potential energy and dipole moment surfaces and a recently developed variational method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of prediction theories has been widely practised for many years in many industries such as manufacturing, defence and aerospace. Although these theories are not new, their application has not been widely used within the building services industry. Collectively, the building services industry should take a deeper look at these approaches in comparison with the traditional deterministic approaches currently being practised. By extending the application into this industry, this paper seeks to provide the industry with an overview of how simplified stochastic modelling coupled with availability and reliability predictions using historical data compiled from various sources could enhance the quality of building services systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the latest advances in the area of advanced computer architectures we are seeing already large scale machines at petascale level and we are discussing exascale computing. All these require efficient scalable algorithms in order to bridge the performance gap. In this paper examples of various approaches of designing scalable algorithms for such advanced architectures will be given and the corresponding properties of these algorithms will be outlined and discussed. Examples will outline such scalable algorithms applied to large scale problems in the area Computational Biology, Environmental Modelling etc. The key properties of such advanced and scalable algorithms will be outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed computing paradigms for sharing resources such as Clouds, Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. While there are some success stories such as PlanetLab, OneLab, BOINC, BitTorrent, and SETI@home, a widespread use of these technologies for business applications has not yet been achieved. In a business environment, mechanisms are needed to provide incentives to potential users for participating in such networks. These mechanisms may range from simple non-monetary access rights, monetary payments to specific policies for sharing. Although a few models for a framework have been discussed (in the general area of a "Grid Economy"), none of these models has yet been realised in practice. This book attempts to fill this gap by discussing the reasons for such limited take-up and exploring incentive mechanisms for resource sharing in distributed systems. The purpose of this book is to identify research challenges in successfully using and deploying resource sharing strategies in open-source and commercial distributed systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper formally derives a new path-based neural branch prediction algorithm (FPP) into blocks of size two for a lower hardware solution while maintaining similar input-output characteristic to the algorithm. The blocked solution, here referred to as B2P algorithm, is obtained using graph theory and retiming methods. Verification approaches were exercised to show that prediction performances obtained from the FPP and B2P algorithms differ within one mis-prediction per thousand instructions using a known framework for branch prediction evaluation. For a chosen FPGA device, circuits generated from the B2P algorithm showed average area savings of over 25% against circuits for the FPP algorithm with similar time performances thus making the proposed blocked predictor superior from a practical viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the use of pulse shaping for optimal excitation of samples in time-domain THz spectroscopy. Pulse shaping can be performed in a 4f optical system to specifications from state space models of the system's dynamics. Subspace algorithms may be used for the identification of the state space models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a multi-robot localization scenario where, for a period of time, the robot team loses communication with one of the robots due to system error. In this novel approach, extended Kalman filter (EKF) algorithms utilize relative measurements to localize the robots in space. These measurements are used to reliably compensate "dead-com" periods were no information can be exchanged between the members of the robot group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson's Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a proposed new approach to the Computer Network Security Intrusion Detection Systems (NIDS) application domain knowledge processing focused on a topic map technology-enabled representation of features of the threat pattern space as well as the knowledge of situated efficacy of alternative candidate algorithms for pattern recognition within the NIDS domain. Thus an integrative knowledge representation framework for virtualisation, data intelligence and learning loop architecting in the NIDS domain is described together with specific aspects of its deployment.