903 resultados para Predicting model
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
This paper addresses the problem of constructing consolidated business process models out of collections of process models that share common fragments. The paper considers the construction of unions of multiple models (called merged models) as well as intersections (called digests). Merged models are intended for analysts who wish to create a model that subsumes a collection of process models - typically representing variants of the same underlying process - with the aim of replacing the variants with the merged model. Digests, on the other hand, are intended for analysts who wish to identify the most recurring fragments across a collection of process models, so that they can focus their efforts on optimizing these fragments. The paper presents an algorithm for computing merged models and an algorithm for extracting digests from a merged model. The merging and digest extraction algorithms have been implemented and tested against collections of process models taken from multiple application domains. The tests show that the merging algorithm produces compact models and scales up to process models containing hundreds of nodes. Furthermore, a case study conducted in a large insurance company has demonstrated the usefulness of the merging and digest extraction operators in a practical setting.
Resumo:
Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.
Resumo:
PURPOSE. To measure tear film surface quality in healthy and dry eye subjects using three noninvasive techniques of tear film quality assessment and to establish the ability of these noninvasive techniques to predict dry eye. METHODS. Thirty four subjects participated in the study, and were classified as dry eye or normal, based on standard clinical assessments. Three non-invasive techniques were applied for measurement of tear film surface quality: dynamic-area high-speed videokeratoscopy (HSV), wavefront sensing (DWS) and lateral shearing interferometry (LSI). The measurements were performed in both natural blinking conditions (NBC) and in suppressed blinking conditions (SBC). RESULTS. In order to investigate the capability of each method to discriminate dry eye subjects from normal subjects, the receiver operating curve (ROC) was calculated and then the area under the curve (AUC) was extracted. The best result was obtained for the LSI technique (AUC=0.80 in SBC and AUC=0.73 in NBC), which was followed by HSV (AUC=0.72 in SBC and AUC=0.71 in NBC). The best result for DWS was AUC=0.64 obtained for changes in vertical coma in suppressed blinking conditions, while for normal blinking conditions the results were poorer. CONCLUSIONS. Non-invasive techniques of tear film surface assessment can be used for predicting dry eye and this can be achieved in natural blinking as well as suppressed blinking conditions. In this study, LSI showed the best detection performance, closely followed by the dynamic-area HSV. The wavefront sensing technique was less powerful, particularly in natural blinking conditions.
Resumo:
With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.
Resumo:
Cloninger’s psychobiological model of temperament and character is a general model of personality that has been widely used in clinical psychology, but has seldom been applied in other domains. In this research we apply Cloninger’s model to the study of leadership. Our study comprised 81 participants who took part in a diverse range of small group tasks. Participants rotated through tasks and groups and rated each other on “emergent leadership.” As hypothesized, leader emergence tended to be consistent regardless of the specific tasks and groups. It was found that personality factors from Cloninger, Svrakic, and Przybeck’s (1993) model could explain trait-based variance in emergent leadership. Results also highlight the role of “cooperativeness” in the prediction of leadership emergence. Implications are discussed in terms of our theoretical understanding of trait-based leadership, and more generally in terms of the utility of Cloninger’s model in leadership research.
Resumo:
Sustainable urban development and the liveability of a city are increasingly important issues in the context of land use planning and infrastructure management. In recent years, the promotion of sustainable urban development in Australia and overseas is facing various physical, socio-economic and environmental challenges. These challenges and problems arise from the lack of capability of local governments to accommodate the needs of the population and economy in a relatively short timeframe. The planning of economic growth and development is often dealt with separately and not included in the conventional land use planning process. There is also a sharp rise in the responsibilities and roles of local government for infrastructure planning and management. This increase in responsibilities means that local elected officials and urban planners have less time to prepare background information and make decisions. The Brisbane Urban Growth Model has proven initially successful in providing a dynamic platform to ensure timely and coordinated delivery of urban infrastructure. Most importantly, this model is the first step for local governments in moving toward a systematic approach to pursuing sustainable and effective urban infrastructure management.
Resumo:
This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.
Resumo:
Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.
Resumo:
In professions such as teaching, health sciences (medicine, nursing, allied health), and built environment (engineering), significant work-based learning through practica is an essential element before graduation. However, there is no such requirement in Accountancy. This thesis reports the findings of a qualitative case study of the development and implementation of a Workplace Learning Experience Program in Accountancy at the Queensland University of Technology (QUT) in Australia. The case study of this intervention, based on sociocultural learning theory, provides the grounds for the development of a new model of teaching and learning for accounting education. The survey and interview-based study documents the responses of two cohorts of university students and a group of employers to a work placement program. The study demonstrates that a 100 hour work placement in Accountancy has elements that enhance student learning. It demonstrates the potential value of the application of sociocultural theories of learning, especially the concept of situated learning involving legitimate peripheral participation (Lave & Wenger, 1991). This research establishes the theoretical base for a paradigm shift for the Accountancy profession to acknowledge work placements prior to graduation as a major element of learning. It is argued that the current model of accounting education requires reform to better align university and workplace learning.
Resumo:
The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the subsaturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.
Resumo:
This paper proposes a generic decoupled imagebased control scheme for cameras obeying the unified projection model. The scheme is based on the spherical projection model. Invariants to rotational motion are computed from this projection and used to control the translational degrees of freedom. Importantly we form invariants which decrease the sensitivity of the interaction matrix to object depth variation. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6-DOF robotic platform.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to collect numerous business process models. Such models may be linked with each other or mutually overlap, supersede one another and evolve over time. Moreover, they may be represented at different abstraction levels depending on the target audience and modeling purpose, and may be available in multiple languages (e.g. due to company mergers). Thus, it is common that organizations struggle with keeping track of their process models. This demonstration introduces AProMoRe (Advanced Process Model Repository) which aims to facilitate the management of (large) process model collections.
Resumo:
The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application