959 resultados para Polymeric Matrices
Resumo:
Revisito una aproximación al relato folklórico, a partir de un archivo de narrativa folklórica riojana. El enfoque teórico combina aportes de la crítica genética con la teoría informática del hipertexto. El archivo incluye versiones orales reunidas en investigaciones de campo (1985-1999), alrededor de la matriz "La dama fantasma", con elementos del motivo folklórico E 322.3.3.1 "The vanishing hitchhiker". Comprende también recreaciones escriturarias, fílmicas y registros virtuales. El trabajo se encuadra en una investigación sobre "Archivos de Narrativa Tradicional Argentina", que revisa criterios de archivación de narrativa tradicional, de la Encuesta Folklórica de 1921 a 2005
Resumo:
In this paper, the scales of Raven's Progressive Matrices Test, General Scale and Advanced Scale, Series II, for the student population (third cycle of EGB and Polimodal ) in the city of La Plata are presented. Considerations are made as regards both the increase in scores (Flynn effect) observed in relation to the previous scale (1964) and the different mean scores according to two age groups (13-16 and 17-18 years of age) and education mode. The findings enabled inferences related to the significance of the increase, particularly in the case of the higher scores in the population attending a special kind of educational institution.
Resumo:
Este trabajo intenta demostrar cómo el denominado "Conflicto del Campo" (2008) puede ser comprendido a partir de la relación entre la cultura y la política. De esta manera, se parte de los cambios que el sector agropecuario experimentó durante los noventa, para luego exponer cómo durante el Conflicto se posicionaron distintos intereses en un mismo lado. Se mencionan, además, los estudios que otros investigadores realizaron sobre el mismo. La mencionada escena política fue estudiada a partir de la realización de entrevistas en profundidad, con el fin de exponer la relación entre procesos de identificación política y matrices culturales.
Resumo:
Revisito una aproximación al relato folklórico, a partir de un archivo de narrativa folklórica riojana. El enfoque teórico combina aportes de la crítica genética con la teoría informática del hipertexto. El archivo incluye versiones orales reunidas en investigaciones de campo (1985-1999), alrededor de la matriz "La dama fantasma", con elementos del motivo folklórico E 322.3.3.1 "The vanishing hitchhiker". Comprende también recreaciones escriturarias, fílmicas y registros virtuales. El trabajo se encuadra en una investigación sobre "Archivos de Narrativa Tradicional Argentina", que revisa criterios de archivación de narrativa tradicional, de la Encuesta Folklórica de 1921 a 2005
Resumo:
En este trabajo se presentan los baremos del Test de Matrices Progresivas de Raven, Escala General y Escala Avanzada, Serie II, para la población estudiantil (Tercer ciclo EGB y Polimodal) de la ciudad de La Plata. Se hacen consideraciones sobre el incremento de puntajes (efecto Flynn)que se observa respecto del baremo anterior (1964); sobre las diferencias de las puntuaciones medias según dos grupos etareos (13-16 y 17-18 años) y según modalidad educativa. Los resultados encontrados permiten hacer inferencias respecto de la significación del incremento, especialmente en el caso de las puntuaciones de mayor magnitud en la población que concurre a un tipo especial de establecimiento educativo.
Resumo:
In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure.
Resumo:
Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs
Resumo:
La tesis MEDIDAS AUTOSEMEJANTES EN EL PLANO, MOMENTOS Y MATRICES DE HESSENBERG se enmarca entre las áreas de la teoría geométrica de la medida, la teoría de polinomios ortogonales y la teoría de operadores. La memoria aborda el estudio de medidas con soporte acotado en el plano complejo vistas con la óptica de las matrices infinitas de momentos y de Hessenberg asociadas a estas medidas que en la teoría de los polinomios ortogonales las representan. En particular se centra en el estudio de las medidas autosemejantes que son las medidas de equilibrio definidas por un sistema de funciones iteradas (SFI). Los conjuntos autosemejantes son conjuntos que tienen la propiedad geométrica de descomponerse en unión de piezas semejantes al conjunto total. Estas piezas pueden solaparse o no, cuando el solapamiento es pequeño la teoría de Hutchinson [Hut81] funciona bien, pero cuando no existen restricciones falla. El problema del solapamiento consiste en controlar la medida de este solapamiento. Un ejemplo de la complejidad de este problema se plantea con las convoluciones infinitas de distribuciones de Bernoulli, que han resultado ser un ejemplo de medidas autosemejantes en el caso real. En 1935 Jessen y A. Wintner [JW35] ya se planteaba este problema, lejos de ser sencillo ha sido estudiado durante más de setenta y cinco años y siguen sin resolverse las principales cuestiones planteadas ya por A. Garsia [Gar62] en 1962. El interés que ha despertado este problema así como la complejidad del mismo está demostrado por las numerosas publicaciones que abordan cuestiones relacionadas con este problema ver por ejemplo [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05],[JKS07] [JKS11]. En el primer capítulo comenzamos introduciendo con detalle las medidas autosemejante en el plano complejo y los sistemas de funciones iteradas, así como los conceptos de la teoría de la medida necesarios para describirlos. A continuación se introducen las herramientas necesarias de teoría de polinomios ortogonales, matrices infinitas y operadores que se van a usar. En el segundo y tercer capítulo trasladamos las propiedades geométricas de las medidas autosemejantes a las matrices de momentos y de Hessenberg, respectivamente. A partir de estos resultados se describen algoritmos para calcular estas matrices a partir del SFI correspondiente. Concretamente, se obtienen fórmulas explícitas y algoritmos de aproximación para los momentos y matrices de momentos de medidas fractales, a partir de un teorema del punto fijo para las matrices. Además utilizando técnicas de la teoría de operadores, se han extendido al plano complejo los resultados que G. Mantica [Ma00, Ma96] obtenía en el caso real. Este resultado es la base para definir un algoritmo estable de aproximación de la matriz de Hessenberg asociada a una medida fractal u obtener secciones finitas exactas de matrices Hessenberg asociadas a una suma de medidas. En el último capítulo, se consideran medidas, μ, más generales y se estudia el comportamiento asintótico de los autovalores de una matriz hermitiana de momentos y su impacto en las propiedades de la medida asociada. En el resultado central se demuestra que si los polinomios asociados son densos en L2(μ) entonces necesariamente el autovalor mínimo de las secciones finitas de la matriz de momentos de la medida tiende a cero. ABSTRACT The Thesis work “Self-similar Measures on the Plane, Moments and Hessenberg Matrices” is framed among the geometric measure theory, orthogonal polynomials and operator theory. The work studies measures with compact support on the complex plane from the point of view of the associated infinite moments and Hessenberg matrices representing them in the theory of orthogonal polynomials. More precisely, it concentrates on the study of the self-similar measures that are equilibrium measures in a iterated functions system. Self-similar sets have the geometric property of being decomposable in a union of similar pieces to the complete set. These pieces can overlap. If the overlapping is small, Hutchinson’s theory [Hut81] works well, however, when it has no restrictions, the theory does not hold. The overlapping problem consists in controlling the measure of the overlap. The complexity of this problem is exemplified in the infinite convolutions of Bernoulli’s distributions, that are an example of self-similar measures in the real case. As early as 1935 [JW35], Jessen and Wintner posed this problem, that far from being simple, has been studied during more than 75 years. The main cuestiones posed by Garsia in 1962 [Gar62] remain unsolved. The interest in this problem, together with its complexity, is demonstrated by the number of publications that over the years have dealt with it. See, for example, [JW35], [Erd39], [PS96], [Ma00], [Ma96], [Sol98], [Mat95], [PS96], [Sim05], [JKS07] [JKS11]. In the first chapter, we will start with a detailed introduction to the self-similar measurements in the complex plane and to the iterated functions systems, also including the concepts of measure theory needed to describe them. Next, we introduce the necessary tools from orthogonal polynomials, infinite matrices and operators. In the second and third chapter we will translate the geometric properties of selfsimilar measures to the moments and Hessenberg matrices. From these results, we will describe algorithms to calculate these matrices from the corresponding iterated functions systems. To be precise, we obtain explicit formulas and approximation algorithms for the moments and moment matrices of fractal measures from a new fixed point theorem for matrices. Moreover, using techniques from operator theory, we extend to the complex plane the real case results obtained by Mantica [Ma00, Ma96]. This result is the base to define a stable algorithm that approximates the Hessenberg matrix associated to a fractal measure and obtains exact finite sections of Hessenberg matrices associated to a sum of measurements. In the last chapter, we consider more general measures, μ, and study the asymptotic behaviour of the eigenvalues of a hermitian matrix of moments, together with its impact on the properties of the associated measure. In the main result we demonstrate that, if the associated polynomials are dense in L2(μ), then necessarily follows that the minimum eigenvalue of the finite sections of the moments matrix goes to zero.
Resumo:
En este trabajo se presenta un método para el modelado de cadenas cinemáticas de robots que salva las dificultades asociadas a la elección de los sistemas de coordenadas y obtención de los parámetros de Denavit-Hartenberg. El método propuesto parte del conocimiento de la posición y orientación del extremo del robot en su configuración de reposo, para ir obteniendo en qué se transforman éstas tras los sucesivos movimientos de sus grados de libertad en secuencia descendente, desde el más alejado al más cercano a su base. Los movimientos son calculados en base a las Matrices de Desplazamiento, que permiten conocer en que se transforma un punto cuando éste es desplazado (trasladado o rotado) con respecto a un eje que no pasa por el origen. A diferencia del método de Denavit-Hartenberg, que precisa ubicar para cada eslabón el origen y las direcciones de los vectores directores de los sistemas de referencia asociados, el método basado en las Matrices de Desplazamiento precisa solo identificar el eje de cada articulación, lo que le hace más simple e intuitivo que aquel. La obtención de las Matrices de Desplazamiento y con ellas del Modelo Cinemático Directo a partir de los ejes de la articulación, puede hacerse mediante algunas simples operaciones, fácilmente programables.
Resumo:
The reinforcing effect of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles in two different polymer matrices, isotactic polypropylene (iPP) and polyphenylene sulfide (PPS), has been investigated by means of dynamic depth-sensing indentation. The hardness and elastic modulus enhancement upon filler addition is analyzed in terms of two main contributions: changes in the polymer matrix nanostructure and intrinsic properties of the filler including matrix-particle load transfer. It is found that the latter mainly determines the overall mechanical improvement, whereas the nanostructural changes induced in the polymer matrix only contribute to a minor extent. Important differences are suggested between the mechanisms of deformation in the two nanocomposites, resulting in a moderate mechanical enhancement in case of iPP (20% for a filler loading of 1%), and a remarkable hardness increase in case of PPS (60% for the same filler content). The nature of the polymer amorphous phase, whether in the glassy or rubbery state, seems to play here an important role. Finally, nanoindentation and dynamic mechanical analysis measurements are compared and discussed in terms of the different directionality of the stresses applied.
Resumo:
Differential resultant formulas are defined, for a system $\cP$ of $n$ ordinary Laurent differential polynomials in $n-1$ differential variables. These are determinants of coefficient matrices of an extended system of polynomials obtained from $\cP$ through derivations and multiplications by Laurent monomials. To start, through derivations, a system $\ps(\cP)$ of $L$ polynomials in $L-1$ algebraic variables is obtained, which is non sparse in the order of derivation. This enables the use of existing formulas for the computation of algebraic resultants, of the multivariate sparse algebraic polynomials in $\ps(\cP)$, to obtain polynomials in the differential elimination ideal generated by $\cP$. The formulas obtained are multiples of the sparse differential resultant defined by Li, Yuan and Gao, and provide order and degree bounds in terms of mixed volumes in the generic case.
Resumo:
Described are assemblies consisting of polymeric capsules, “polycaps,” formed from two calix[4]arene tetraureas covalently connected at their lower rims. In these structures self-assembly leads to reversibly formed capsule sites along a chain, reminiscent of beads on a string. Their dynamic behavior is characterized by 1H NMR spectroscopy through encapsulation of guest species, reversible polymerization, and the formation of sharply defined hybrid capsules.
Resumo:
Graphs of second harmonic generation coefficients and electro-optic coefficients (measured by ellipsometry, attenuated total reflection, and two-slit interference modulation) as a function of chromophore number density (chromophore loading) are experimentally observed to exhibit maxima for polymers containing chromophores characterized by large dipole moments and polarizabilities. Modified London theory is used to demonstrated that this behavior can be attributed to the competition of chromophore-applied electric field and chromophore–chromophore electrostatic interactions. The comparison of theoretical and experimental data explains why the promise of exceptional macroscopic second-order optical nonlinearity predicted for organic materials has not been realized and suggests routes for circumventing current limitations to large optical nonlinearity. The results also suggest extensions of measurement and theoretical methods to achieve an improved understanding of intermolecular interactions in condensed phase materials including materials prepared by sequential synthesis and block copolymer methods.
Resumo:
Transcytosis of the polymeric immunoglobulin receptor (pIgR) is stimulated by binding of its ligand, dimeric IgA (dIgA). During this process, dIgA binding at the basolateral surface of the epithelial cell transmits a signal to the apical region of the cell, which in turn stimulates the transport of dIgA–pIgR complex from a postmicrotubule compartment to the apical surface. We have previously reported that the signal of stimulation was controlled by a protein-tyrosine kinase (PTK) activated upon dIgA binding. We now show that this signal of stimulation moves across the cell independently of pIgR movement or microtubules and acts through the tyrosine kinase activity by releasing Ca++ from inositol trisphosphate–sensitive intracellular stores. Surprisingly we have found that a second independent signal is required to achieve dIgA-stimulated transcytosis of pIgR. This second signal depends on dIgA binding to the pIgR solely at the basolateral surface and the ability of pIgR to dimerize. This enables pIgR molecules that have bound dIgA at the basolateral surface to respond to the signal of stimulation once they reach the postmicrotubule compartment. We propose that the use of two signals may be a general mechanism by which signaling receptors maintain specificity along their signaling and trafficking pathways.