997 resultados para Polimeros - Propriedades eletricas
Resumo:
The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties
Resumo:
In this work a study about the mechanical properties of the API 5L X70 steel, with or without heat treating, has been made, with the intetion of assess the influence of cooling after the austenitization heat treating by air cooling (normalizing) and a rapid cooling with oil (tempering). This steel is known by high strength and ductility values and it is commonly used in the manufacture of oil pipes. The growing energy demand encouraged the study and manufacture of this material. Although this microalloyed dispense subsequent heat treatings, it was proven that its implementation is very advantageous for this type of application, improving hardness and plastic stability. It was also assessed that the faster the cooling rate is, the better will be these properties
Resumo:
Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free
Resumo:
The increasing application of structural composites in the aerospace industry is mainly due to its low specific weight coupled with its excellent mechanical properties when in service. As a result of climatic variations that pass the aircraft is of paramount importance to study the influence of weathering on this type of material when subjected to such changes. The purpose of this work is to evaluate the mechanical behavior of specimens of kevlar fiber /epoxy matrix composites, by dynamic mechanical thermal analysis (DMA) and interlaminar shear strength tests (ILSS), after passing through three environmental conditioning: saline fog, hygrothermal and ultraviolet radiation. From the results, we concluded that the laminate was molded supplied homogeneously, not presenting problems such as porosity, delaminations or cracks inside. After a period of 625 hours of exposure to hygrothermal conditioning, we observed a 1,2% maximum of absorption of moisture. Samples subjected to the conditioning by UV irradiation (600 hours) and salt spray showed a reduction of about 24,30% and 32,30%, respectively, on the shear strength (ILSS). In DMA analysis is not observed significant changes on the glass transition temperature. However, when considering the storage modulus of the samples conditioned by UV radiation (1200 hours), salt spray and hygrothermal conditioning there is an increase of 5,34% , 7,19% and 5,57% respectively
Resumo:
The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions
Resumo:
Geophysics studies in areas impacted by petroleum derivatives describe abnormalities of both low and high electrical resistivity (the opposite of electrical conductivity), confirmed as contaminant phase by chemical analysis: this contradiction can be explained by degrading processes that naturally occur and create sub products that can change the environment conductivity. Monitoring the variation of the parameters mentioned serves as a comparative basis to the variation in geoelectrical parameters, which identified the correlation between the same contaminant parameters and the difference between their behavior studied apart, as well as its relations with the biodegradation process. The results are applied to the fuel distribution and storage sectors, leading to the diagnosis and monitoring of possible groundwater contamination scenarios, and the knowledge of the area exposure time to the contaminant, besides the better remediation alternative and impacts control. Among some conclusions, the most significant are the decrease in conductivity over time, so as the increase in Eh value in the gasoline contaminated tank, as well as the decrease in the pH value in the second tank with ethanol, which can be attributed to its degradation. Comparing the variations in both tanks, it is evident that Eh, pH and electrical conductivity do not behave temporally in a similar way, although some correlations between Eh and pH can be related.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Many types of food contain ingredients or bioactive compounds that provide health benefits. The collagen is a fibrous protein found in the connective tissue of the body, and it plays a part in the tissues resistance and elasticity. Due to their functional characteristics, this protein has been added into foods in order to achieve therapeutic effects. This paper aimed at showing how the collagen formation occurs, and the beneficial effects of this compound in the organism as well as its characteristics, properties and applications in food.
Resumo:
This study presents a literature review which shows the nutritional, medicinal and antioxidant importance of mushrooms. In this research, the main antioxidant compounds of mushrooms, such as phenolic acids, flavonoids and tocopherols, as well as their mechanisms of action were described. The main in vitro methods used for evaluation of the antioxidant activity of these compounds were approached. The influences from the solvent polarity and the kind of extraction in the acquisition of the antioxidant compounds were also discussed. It was possible to conclude that mushrooms are a source of carbohydrates, proteins and minerals, thus presenting nutritional properties. The functional and medicinal properties are attributed to glucans, besides being excellent sources of natural antioxidants. Regarding the extraction process, it was noticed that the solvent polarity used in the extraction process is determinant in the obtainment of antioxidant compounds.
Resumo:
The present literature review aimed to describe biodisel’s physicochemical properties obtained from different raw materials. Were studied data concerning viscosity, density, cetane number, fl ash point, pour point and calorifi c power of biodiesel produced from soybean oil, coconut, rice bran, cotton, pequi, babassu, mamona, palm, castor, sunfl ower, corn, canola, jatropha and karanja. Considering the diversity of vegetal and animal sources that can be used on the biodiesel production, it is noteworthy the lack of data concerning physicochemical properties of unexplored raw materials. This work may contribute for the creation of database about physicochemical properties of oil and biodiesel from different sources which will allow design and scale-up, both the necessary equipment to the production line and reciprocating engines.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Seeking to meet the requirements: relatively low cost of materials and wide applicability in the automotive industry. The best option was the steel Dual Phase (DP), because that is lighter, have high formability, meet the cost requirements and applicability, steel Dual Phase (DP) came to meet these requirements with its two-phase microstructure, ferrite and martensite microstructure who claim to respect and mechanical properties. In this context, the aim of this study was to correlate the microstructure revealed in metallography to the mechanical properties observed in hardness and tensile tests. The microstructure is revealed by etching in 2% nital and then captured images of the sample were processed in ImageJ software to aid in determining the volume fraction of the phases present. Therefore, the mechanical properties were evaluated with respect to volume fraction of the steel layers and analyzed DP 600 together with the mechanical properties obtained by Rockwell hardness test and tensile test. With the values of the mechanical properties calculated and tested, it was possible to describe the method of metallography, as the attack phase and counts, so that it can use this relationship tested/calculated property as a qualitative analytical tool. The method used for the correlation between the microstructure and mechanical properties confirmed the importance of the phases present in the Dual Phase steel to obtain the desired mechanical properties in the application of the steel
Resumo:
This graduation work done study of polyamide 6.6/composite carbon fibres, since its processing, characterization of the main properties. Besides the influence of temperature, UV radiation, salt spray and moisture on the mechanical and viscoelastic behavior. To achieve this goal, the first composite was processed from the heat compression molding using known variables of the process and using the empirical method to find the best value for other parameters. The method processing molding was chosen because it common in composites processing in order to evaluate the influence of crystallinity of the properties that influence the mechanical and viscoelastic behavior laminates. From the obtained laminate specimens were evaluated in weathering, such as: in hygrothermal chamber, UV, salt spray and thermal shock. In another step, the effect produced by these constraints were evaluated by optical microscopy, ultrasound, dynamic mechanical analysis and vibration tests. This project was conducted at the Department of Technology and Materials of UNESP in Guaratingueta, where all the equipment and techniques for the implementation of this project met available. After the tests proved the applicability of the composite polyamide 6.6/carbon fibers in aeronautical applications with resistance the main climatic influences
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Ciência Florestal - FCA