844 resultados para Plastic adhesion
Resumo:
The purpose of this investigation was to interpret the bitumen-aggregate adhesion based on the dielectric spectroscopic response of individual material components utilizing their dielectric constants, refractive indices and average tangent of the dielectric loss angle (average loss tangent). Dielectric spectroscopy of bitumen binders at room temperature was performed in the frequency range of 0.01–1000 Hz. Dielectric spectroscopy is an experimental method for characterizing the dielectric permittivity of a material as a function of frequency. Adhesion data has been determined using the Rolling bottle method. The results show that the magnitude of the average tangent of the dielectric loss angle (average loss tangent) depends on bitumen type. The average loss tangent in the frequency range 0.01–1 Hz is introduced as a potential indicator for predicting polarizability and, thereby, adhesion potential of bitumen binders to quartz aggregates when using Portland cement. In order to obtain acceptable adhesion of 70/100 penetration grade bitumen binders and quartz aggregates when using Portland cement, it is suggested that the binder have an average tan δ > 0.035 in the frequency range 0.01–1 Hz.
Resumo:
This thesis is concerned with the nature of biomaterial interactions with compromised host tissue sites. Both ocular and dermal tissues can be wounded, following injury, disease or surgery, and consequently require the use of a biomaterial. Clear analogies exist between the cornea/tear film/contact lens and the dermal wound bed/wound fluid/skin adhesive wound dressing. The work described in this thesis builds upon established biochemistry to examine specific aspects of the interaction of biomaterials with compromised ocular and dermal tissue sites, with a particular focus on the role of vitronectin. Vitronectin is a prominent cell adhesion glycoprotein present in both tear fluid and wound fluid, and has a role in the regulation and upregulation of plasmin. The interaction of contact lenses with the cornea was assessed by a novel on-lens cell-based vitronectin assay technique. Vitronectin mapping showed that vitronectin-mediated cell adhesion to contact lens surfaces was due to the contact lens-corneal mechanical interaction rather than deposition out of the tear film. This deposition is associated predominantly with the peripheral region of the posterior contact lens surface. The locus of vitronectin deposition on the contact lens surface, which is affected by material modulus, is potentially an important factor in the generation of plasmin in the posterior tear film. Use of the vitronectin mapping technique on ex vivo bandage contact lenses revealed greater vitronectin-mediated cell adhesion to the contact lens surfaces in comparison to lenses worn in the healthy eye. The results suggest that vitronectin is more readily deposited from the impaired corneal tissue bed than the intact healthy tissue bed. Significantly, subjects with a deficient tear film were found to deposit high vitronectin-mediated cell adhesion levels to the BCL surface, thus highlighting the influence of the contact lens-tissue interaction upon deposition. Biomimetic principles imply that adhesive materials for wound applications, including hydrogels and hydrocolloids, should closely match the surface energy parameters of skin. The surface properties of hydrocolloid adhesives were found to be easily modified by contact with siliconised plastic release liners. In contrast, paper release liners did not significantly affect the adhesive surface properties. In order to characterise such materials in the actual wound environment, which is an extremely challenging task, preliminary considerations for the design of an artificial wound fluid model from an animal serum base were addressed.
Resumo:
The present work addresses the control of the mPOF Bragg grating spectrum properties through acousto-optic modulation. For the first time, the interaction of a flexural acoustic wave, generated by longitudinal excitation of different frequencies, with the Bragg grating will be presented. Also it will be demonstrated the quasi linear relationship between PZT load and maximum reflected power/ 3dB bandwidth of the reflected spectrum.
Resumo:
A Ni-Mg-Al-Ca catalyst was prepared by a co-precipitation method for hydrogen production from polymeric materials. The prepared catalyst was designed for both the steam cracking of hydrocarbons and for the in situ absorption of CO2 via enhancement of the water-gas shift reaction. The influence of Ca content in the catalyst and catalyst calcination temperature in relation to the pyrolysis-gasification of a wood sawdust/polypropylene mixture was investigated. The highest hydrogen yield of 39.6molH2/g Ni with H2/CO ratio of 1.90 was obtained in the presence of the Ca containing catalyst of molar ratio Ni:Mg:Al:Ca=1:1:1:4, calcined at 500°C. In addition, thermogravimetric and morphology analyses of the reacted catalysts revealed that Ca introduction into the Ni-Mg-Al catalyst prevented the deposition of filamentous carbon on the catalyst surface. Furthermore, all metals were well dispersed in the catalyst after the pyrolysis-gasification process with 20-30nm of NiO sized particles observed after the gasification without significant aggregation.
Resumo:
A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission. © 2012 IEEE.
Resumo:
Hydrogenated amorphous carbon films with diamond like structures have been formed on different substrates at very low energies and temperatures by a plasma enhanced chemical vapor deposition process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with Ar as carrier gas. The films were grown at very high deposition rates. Deposition on Si, glass and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion and optical properties. Deposition rates up to 20 nm/s have been achieved at substrate temperatures below 100°C. The typical sp3 content of 60-75% in the films was determined by X-ray generated Auger electron spectroscopy. Hardness, reduced modulus and adhesion were measured using a MicroMaterials Nano Test Indenter/Scratch tester. Hardness was found to vary from 4 to 13 GPa depending on deposition conditions. Adhesion was significantly influenced by the substrate temperature and in situ DC cleaning. Hydrogen content in the film was measured by a combination of the Fourier transform infrared and Rutherford backscattering techniques. Advantages of these films are: low ion energy and deposition temperature, very high deposition rates, low capital cost of the equipment and the possibility of film properties being tailored according to the desired application.
Resumo:
Az SAP-rendszernek a kontrollingszervezetek működésére gyakorolt pozitív hatása nem titok. A visszacsatolás lehetőségének biztosításával alkalom nyílik a szervezetek tevékenységének követésére, ellenőrzésére, felülbírálására. A logisztika mint az egész vállalatot átszövő rendszer, működésének nyomon követése is létfontosságúvá vált, hiszen összetettségéből kifolyólag jellegzetességei, színvonala az egész rendszerre hatást gyakorol. A logisztikai rendszer és folyamatainak figyelemmel kísérésére a logisztikai kontrollingrendszer nyújt megoldást, visszacsatolási pontjain keresztül. A műanyag-feldolgozó vállalat esetében a szervezeti SAP-rendszer logisztikai kontrollingterületének fejlesztésétől várják a szervezeti hatékonyság emelkedését és a jobb színvonal elérését. _____ Positive effect of the SAP system on the operation of controlling organisations has not been a secret. Opportunity of the feedback will be possible to track, control, override operation of the organisations. The logistic controlling system provides a solution through feedback points for monitoring the logistic system and processes. In the case of plastics manufacturing company the increasing of organisational efficiency and achievement of a better standard is anticipated from development of logistic controlling area of the organisational SAP system.
Resumo:
The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^
Resumo:
This dissertation presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in (1) a parallel plate blow chamber that contained two-dimensional (2D) stents that feature completely recirculating flow, partially recirculating flow, and completely reattached flow, and (2) a three-dimensional (3D) cylindrical tube that contained stents of various geometric designs. ^ Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition was very low in the recirculation regions in the 3D stents unlike the 2D stents. Deposition distal to a strut was always high in 2D and 3D stents. Spirally recirculating regions were found in 3D unlike in 2D stents, where the deposition was higher than at well-separated regions of recirculation. ^
Resumo:
Floating plastic debris sampled in surface waters of northwestern Mediterranean Sea during summer 2013. Geographical coordinates and dates of sampling are available in the dataset.
Resumo:
The cleft palate presented by transforming growth factor-β3 (Tgf-β3 ) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 ( Tgf-β1 ) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β 3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β 1 and Msx-1 in Tgf-β 3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β 3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal esenchyme. Inhibition of TGF-β 1 does not affect either EGF or Msx-1 expression.
Resumo:
Acknowledgements V.B., N.K.G., and E.A. contributed with conception and experimental design. V.B. performed the experiments. V.B., R.H., A.G., and R.M.M. carried out analysis and interpretation of data. V.B., R.H., A.G., and E.A. wrote the manuscript. V.B. and R.H. contributed equally to this work. V.B. acknowledges funding by SPP 1420 of the German Science Foundation DFG. E.A., N.K.G., and R.H. acknowledge funding from the European Research Council under the European Union/ERC Advanced Grant “Switch2Stick,” Agreement No. 340929.
Resumo:
The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem but all nonlinear processes, both Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ. The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.
Resumo:
When plastic pipe is solidified, it proceeds through a long cooling chamber. Inside this chamber, inside the hollow extrudate, the plastic is molten, and this inner surface solidifies last. Sag, the flow due to the self-weight of the molten plastic, then happens in this cooling chamber, and sometimes, thickened regions (called knuckles) arise in the lower quadrants, especially of large diameter thickwalled pipes. To compensate for sag, engineers normally shift the die centerpiece downward. This thesis focuses on the consequences of this decentering. Specifically, when the molten polymer is viscoelastic, as is normally the case, a downward lateral force is exerted on the mandrel. Die eccentricity also affects the downstream axial force on the mandrel. These forces govern how rigidly the mandrel must be attached (normally, on a spider die). We attack this flow problem in eccentric cylindrical coordinates, using the Oldroyd 8-constant constitutive model framework. Specifically, we revise the method of Jones (1964), called polymer process partitioning. We estimate both axial and lateral forces. We develop a corresponding map to help plastics engineers predict the extrudate shape, including extrudate knuckles. From the mass balance over the postdie region, we then predict the shape of the extrudate entering the cooling chamber. We further include expressions for the stresses in the extruded polymer melt. We include detailed dimensional worked examples to show process engineers how to use our results to design pipe dies, and especially to suppress extrudate knuckling.
Resumo:
Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.