995 resultados para Plasma Calcium
Resumo:
The involvement of voltage-gated calcium channels in the survival of immature CNS neurons was studied in aggregating brain cell cultures by examining cell type-specific effects of various channel blockers. Nifedipine (10 microM), a specific blocker of L-type calcium channels, caused a pronounced and irreversible decrease of glutamic acid decarboxylase activity, whereas the activity of choline acetyltransferase was significantly less affected. Flunarizine (1-10 microM, a relatively unspecific ion channel blocker) elicited similar effects, that were attenuated by NMDA. The glia-specific marker enzymes, glutamine synthetase and 2',3'-cyclic nucleotide 3'-phosphohydrolase, were affected only after treatment with high concentrations of nifedipine (50 microM) or NiCl2 (100 microM, shown to block T-type calcium channels). Nifedipine (50 microM), NiCl2 (100 microM), and flunarizine (5 microM) also caused a significant increase in the soluble nucleosome concentration, indicating increased apoptotic cell death. This effect was prevented by cycloheximide (1 microM). Furthermore, the combined treatment with calcicludine (10 nM, blocking L-type calcium channels) and funnel-web spider toxin-3.3 (100 nM, blocking T-type channels) also caused a significant increase in free nucleosomes as well as a decrease in glutamic acid decarboxylase activity. In contrast, cell viability was not affected by peptide blockers specific for N-, P-, and/or Q-type calcium channels. Highly differentiated cultures showed diminished susceptibility to nifedipine and flunarizine. The present data suggest that the survival of immature neurons, and particularly that of immature GABAergic neurons, requires the sustained entry of Ca2+ through voltage-gated calcium channels.
Resumo:
Rapport de synthèse : Introduction: la prévalence de l'insuffisance rénale chronique (IRC) augmente et malgré les traitements de remplacement rénal telle que la transplantation ou la dialyse, la mortalité chez des patients atteints d'une IRC reste très élevée. Les maladies cardiovasculaires sont la cause principale de mortalité chez ces patients, et le risque de décès dú à une complication cardiovasculaire est chez eux accru de 10 à 20 fois par rapport à la population générale. Méme si les facteurs de risque cardiovasculaires «traditionnels », principalement l'hypertension artérielle et le diabète sont très prévalents chez les patients avec IRC, ils sont insuffisants pour expliquer l'excès de mortalité cardiovasculaire. D'autres facteurs de risques « nontraditionnels » comme l'accumulation du diméthylarginine asymétrique (ADMA), un inhibiteur endogène de la synthase d'oxyde d'azote (NO), semblent aussi être importants. Chez les patients avec IRC, des taux élevés d'ADMA sont un puissant facteur prédictif indépendant de la mortalité cardiovasculaire. Il a également été démontré chez des souris que l'ADMA peut étre une cause directe de dysfonction endothéliale. Cette dernière joue un rôle primordial dans le développement de l'athérosclérose, cause principale des complications cardiovasculaires. Le but du présent travail est de tester l'hypothèse qu'une réduction du taux d'ADMA après une séance unique d'hémodialyse améliore la dysfonction endothéliale. Méthodes: la dysfonction endothéliale peut être évaluée dans les microvaisseaux de la péan de façon non invasive par fluxmétrie laser Doppler. La vasodilatation cutanée induite par un échauffement local de 34° à 41 °C (hyperémie thermique) est connue pour être dépendante de la production endothéliale de NO et a été utilisée dans plusieurs études cliniques pour évaluer la dysfonction endothéliale. Nous avons recruté 24 patients traités par hémodialyse chronique et également 24 sujets contrôles du même âge et sexe. Chez les patients dialysés, l'hyperémie thermique est mesuré une fois directement avant une séance d'hémodialyse, et une fois directement après une autre séance, toutes deux distantes de 2 à 7 jours. En même temps, les taux plasmatiques d'ADMA sont mesurés par la méthode de spectrométrie de masse en tandem. Chez les sujets contrôle, l'hyperémie thermique est également mesurée à deux reprises, à un intervalle de 2 à 7 jours comme chez les patients dialysés et les taux d'ADMA sont déterminés qu'une seule fois. Résultats: chez les patients dialysés, les réactions d'hyperémie thermique étaient superposables avant et après dialyse, mais moindre que chez les sujets contrôles. Par contre, les taux d'ADMA étaient plus élevés avant qu'après dialysé. Les taux d'ADMA après dialyse étaient similaires aux taux chez les sujets contrôles. Conclusion: cette étude montre que la vasodilatation dépendante de la production endothéliale de NO dans la microcirculation cutanée n'est pas influencée par les taux plasmatiques d'ADMA chez les patients dialysés. Ces résultats suggèrent que d'autres mécanismes sont responsables de la dysfonction endothéliale chez ces patients. Ceci met en question le concept que l'accumulation d'ADMA est un facteur causal du risque cardiovasculaire élevé et suggère que l'ADMA est juste un marqueur du milieu très athérogénique causé par l'IRC.
Resumo:
Alleviation of Al rhizotoxicity by Ca and Mg can differ among species and genotypes. Root elongation of soybean [Glycine max (L.) Merr.] line N93-S-179 and cvs. Young and Ransom exposed to varying concentrations of Al, Ca and Mg were compared in two experiments using a vertically split root system. Roots extending from a surface compartment with limed soil grew for 12 days into a subsurface compartment with nutrient solution treatments maintained at pH 4.6 with either 0 or 15 µmol L-1 Al. Calcium and Mg concentrations in treatments ranging from 0 to 20 mmol L-1. Although an adequate supply of Mg was provided in the surface soil compartment for soybean top growth, an inclusion of Mg was necessary in the subsurface solutions to promote root elongation in both the presence and absence of Al. In the absence of Al in the subsurface solution, tap root length increased by 74 % and lateral root length tripled when Mg in the solutions was increased from 0 to either 2 or 10 mmol L-1. In the presence of 15 µmol L-1 Al, additions of 2 or 10 mmol L-1 Mg increased tap root length fourfold and lateral root length by a factor of 65. This high efficacy of Mg may have masked differences in Al tolerance between genotypes N93 and Young. Magnesium was more effective than Ca in alleviating Al rhizotoxicity, and its ameliorative properties could not be accounted for by estimated electrostatic changes in root membrane potential and Al3+ activity at the root surface. The physiological mechanisms of Mg alleviation of Al injury in roots, however, are not known.
Resumo:
We performed a case-control study to determine the association of BK plasma viremia with hemorrhagic cystitis (HC) in hematopoietic cell transplant (HCT) recipients. Thirty cases of HC (14 of which occurred after platelet engraftment with documented BK viruria [BK-HC]) were compared with matched controls. Weekly plasma samples were tested for BK virus DNA by polymerase chain reaction (PCR). BK viremia detected before or during the disease was independently associated with HC (adjusted odds ratio = 30, P < .001); BK viremia was even important before clinical symptoms of HC occurred (odds ratio = 11, P < .001). Cases of HC and BK-HC had a significantly higher peak of BK plasma viral load than controls. BK virus was detected by in situ hybridization in bladder biopsies of 2 cases with severe HC and long-lasting BK viremia. BK virus seems to play a role in the development of HC and quantitative detection of BK DNA in plasma appears to be a marker of BK virus disease in HCT recipients.
Resumo:
Iowa agriculture depends on anhydrous ammonia as a low-cost form of nitrogen fertilizer on 61 percent of Iowa’s 12.4 million acres of corn. Now we find a threat to that source of nutrient—the theft of anhydrous ammonia for use in making a powerful, illegal narcotic called methamphetamine. Naturally, the fertilizer industry is outraged by the illegal and illicit use of our products. We want to play a role in preventing abuse in the future. By raising awareness, knowing how to respond and using the Meth Inhibitor, fertilizer dealers can assist law enforcement in combating this illicit use of a product important to Iowa farmers.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
Para aumentar a precisão nas análises químicas de fertilidade do solo e dosar simultaneamente vários elementos, alguns laboratórios vêm optando pelo uso da técnica da espectrofotometria de emissão ótica em plasma induzido (ICP), em detrimento da técnica da espectrofotometria de absorção atômica (EAA), hoje comumente utilizada nos laboratórios de análise de solos. Este trabalho, além de comparar as duas técnicas de dosagem quanto à precisão, à reprodutibilidade e à magnitude dos teores dos micronutrientes Fe, Zn, Cu e Mn, extraídos por Mehlich-1, Mehlich-3 e DTPA-TEA, objetivou, também, selecionar os comprimentos de onda que apresentam menores interferências espectrais no ICP. Foram utilizadas 36 amostras (0 a 0,2 m) de solos coletadas nos Estados de Minas Gerais e Bahia, com ampla variação nos teores de micronutrientes, sendo selecionados três solos para definir os comprimentos de onda do ICP e avaliar a precisão e a reprodutibilidade dos métodos de dosagem. Os comprimentos de onda com menores interferências espectrais no ICP foram: 259,939 nm para Fe em Mehlich-1 e DTPA-TEA e 234,349 nm em Mehlich-3; 213,857 nm para Zn e 324,752 nm para Cu nos três extratores; e 259,372 nm para Mn em Mehlich-1 e DTPA-TEA e 260,568 nm em Mehlich-3. Tanto o ICP quanto o EAA foram precisos e reprodutíveis nas dosagens de Fe e Mn, sendo o ICP, em virtude do seu menor limite de detecção, mais preciso e reprodutível nas dosagens de Zn e Cu. Os métodos de dosagem diferiram estatisticamente (p < 0,01) pelo teste de identidade aplicado, para as dosagens de Fe, Zn, Cu e Mn, utilizando Mehlich-1, Mehlich-3 e DTPA-TEA, comprometendo assim a interpretação dos resultados gerados pelo ICP, com base nos níveis críticos gerados a partir do EAA.
Resumo:
Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane H(+)-ATPases that are required to control apoplastic pH. Our results show that H(+)-ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, H(+)-ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH.
Resumo:
Concentrations of the enantiomers of unconjugated and of total (unconjugated plus conjugated) mianserin, desmethylmianserin and 8-hydroxymianserin were measured in 12 patients before and after the introduction of carbamazepine. The dose of mianserin was 60 mg/d, carbamazepine was coadministered at 400 mg/d for 4 weeks, and blood samples were taken at weekly intervals after the introduction of carbamazepine. Each week, carbamazepine significantly decreased plasma concentrations of unconjugated and total (S)-mianserin (the more potent enantiomer) and of unconjugated and total (R)-mianserin. On average, plasma concentrations of unconjugated and total (S)-mianserin and of unconjugated and total (R)-mianserin were 55%, 56%, 66%, and 55%, respectively, of the corresponding values before introduction of carbamazepine. These results strongly suggest the involvement of CYP3A4, the major CYP enzyme induced by carbamazepine, in the metabolism of both enantiomers of mianserin. A strong decrease in the concentrations of (S)-8-hydroxymianserin was also measured (on average, the concentrations were 69% of the corresponding values before carbamazepine introduction). Conversely, plasma concentrations of unconjugated and of total (S)-desmethylmianserin, (R)-desmethylmianserin, and (R)-8-hydroxymianserin were only slightly modified by carbamazepine. From a clinical point of view, as a therapeutic window for (S)-mianserin has been recently suggested, the dose of racemic mianserin for a patient whose (S)-mianserin concentrations have been stabilized within this therapeutic window would need to be approximately doubled if carbamazepine, at 400 mg/d, is introduced as a comedication.
Resumo:
In this study, we show that an inhibitor of sphingolipid biosynthesis, d,l-threo-1-phenyl-2- decanoylamino-3-morpholino-1-propanol (PDMP), inhibits brefeldin A (BFA)-induced retrograde membrane transport from Golgi to endoplasmic reticulum (ER). If BFA treatment was combined with or preceded by PDMP administration to cells, disappearance of discrete Golgi structures did not occur. However, when BFA was allowed to exert its effect before PDMP addition, PDMP could not ¿rescue¿ the Golgi compartment. Evidence is presented showing that this action of PDMP is indirect, which means that the direct target is not sphingolipid metabolism at the Golgi apparatus. A fluorescent analogue of PDMP, 6-(N-[7-nitro-2,1,3-benzoxadiazol-4-yl]amino)hexanoyl-PDMP (C6-NBD-PDMP), did not localize in the Golgi apparatus. Moreover, the effect of PDMP on membrane flow did not correlate with impaired C6-NBD-sphingomyelin biosynthesis and was not mimicked by exogenous C6-ceramide addition or counteracted by exogenous C6-glucosylceramide addition. On the other hand, the PDMP effect was mimicked by the multidrug resistance protein inhibitor MK571. The effect of PDMP on membrane transport correlated with modulation of calcium homeostasis, which occurred in a similar concentration range. PDMP released calcium from at least two independent calcium stores and blocked calcium influx induced by either extracellular ATP or thapsigargin. Thus, the biological effects of PDMP revealed a relation between three important physiological processes of multidrug resistance, calcium homeostasis, and membrane flow in the ER/ Golgi system.
Resumo:
Muscle is a major player in metabolism. It uses large amounts of glucose in the absorptive state and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. Lipid substrates such as fatty acids or ketone bodies are preferentially used by muscle in certain physiological conditions. Muscle is also the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters such as glucose carriers, carnitine, creatine or amino acid transporters maintain muscle metabolism by taking up or releasing substrates or metabolites across the cell surface. The goal of this review is the molecular characterization of muscle membrane transporter proteins and the analysis of their regulatory roles.
Resumo:
In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium.
Resumo:
OBJECTIVES: Elevated plasma levels of the elastase alpha 1-proteinase inhibitor complex (E-alpha 1 PI) have been proposed as a marker of bacterial infection and neutrophil activation. Liberation of elastase from neutrophils after collection of blood may cause falsely elevated results. Collection methods have not been validated for critically ill neonates and children. We evaluated the influence of preanalytical methods on E-alpha 1 PI results including the recommended collection into EDTA tubes. DESIGN AND METHODS: First, we compared varying acceleration speeds and centrifugation times. Centrifugation at 1550 g for 3 min resulted in reliable preparation of leukocyte free plasma. Second, we evaluated all collection tubes under consideration for absorption of E-alpha 1 PI. Finally, 12 sets of samples from healthy adults and 42 sets obtained from critically ill neonates and children were distributed into the various sampling tubes. Samples were centrifuged within 15 min of collection and analyzed with a new turbidimetric assay adapted to routine laboratory analyzers. RESULTS: One of the two tubes containing a plasma-cell separation gel absorbed 22.1% of the E-alpha 1 PI content. In the remaining tubes without absorption of E-alpha 1 PI no differences were observed for samples from healthy adult patients. However, in samples from critically ill neonates or children, significantly higher results were obtained for plain Li-heparin tubes (mean = 183 micrograms/L), EDTA tubes (mean = 93 micrograms/L), and citrate tubes (mean = 88.5 micrograms/L) than for the Li-hep tube with cell-plasma separation gel and no absorption of E-alpha 1 PI (mean = 62.4 micrograms/L, p < 0.01). CONCLUSION: Contrary to healthy adults, E-alpha 1 PI results in plasma samples from critically ill neonates and children depend on the type of collection tube.
Resumo:
Here we review the results of our recent studies on neurodegeneration together with data on cerebral calcium precipitation in animal models and humans. A model that integrates the diversity of mechanisms involved in neurodegeneration is presented and discussed based on the functional relevance of calcium precipitation.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha) is an important transcription factor in liver that can be activated physiologically by fasting or pharmacologically by using high-affinity synthetic agonists. Here we initially set out to elucidate the similarities in gene induction between Wy14643 and fasting. Numerous genes were commonly regulated in liver between the two treatments, including many classical PPARalpha target genes, such as Aldh3a2 and Cpt2. Remarkably, several genes induced by Wy14643 were upregulated by fasting independently of PPARalpha, including Lpin2 and St3gal5, suggesting involvement of another transcription factor. Using chromatin immunoprecipitation, Lpin2 and St3gal5 were shown to be direct targets of PPARbeta/delta during fasting, whereas Aldh3a2 and Cpt2 were exclusive targets of PPARalpha. Binding of PPARbeta/delta to the Lpin2 and St3gal5 genes followed the plasma free fatty acid (FFA) concentration, consistent with activation of PPARbeta/delta by plasma FFAs. Subsequent experiments using transgenic and knockout mice for Angptl4, a potent stimulant of adipose tissue lipolysis, confirmed the stimulatory effect of plasma FFAs on Lpin2 and St3gal5 expression levels via PPARbeta/delta. In contrast, the data did not support activation of PPARalpha by plasma FFAs. The results identify Lpin2 and St3gal5 as novel PPARbeta/delta target genes and show that upregulation of gene expression by PPARbeta/delta is sensitive to plasma FFA levels. In contrast, this is not the case for PPARalpha, revealing a novel mechanism for functional differentiation between PPARs.