959 resultados para Plants in the Bible.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis is aimed at studying the possible pathways and the mechanisms that can trigger oxylipins biosynthesis, and particularly that of short chain aldehydes and alcohols, in Lactobacillus helveticus, also in the presence of oxidative stress, using a totally labelled linoleic acid as precursor. In plants and fungi these molecules, involved in defence mechanisms against pathogens and in communication systems, derive from the oxidation of cellular unsaturated fatty acids (UFAs) and their accumulation is associated with stress exposure. Since some oxylipins are produced also by lactobacilli, it is possible to hypothesize that a metabolic pathway from UFAs to oxylipins, similar to what happens in plants and fungi, is present also in lactic acid bacteria. The results obtained pointed out that some volatile molecules are the result of UFAs catabolism, since they appear only when cells are incubated in their presence. Labelled linoleic acid is integrated in the membrane and subsequently transformed into aldehydes and alcohols, whose extent and carbon atoms number depend on stress exposure. The enzymes responsible for this metabolic pathway in plants and fungi (e.g. lipoxygenase, dioxygenase) seem to be absent in Lactobacillus helveticus and in other lactobacilli. Proteomic analyses show the over expression of many proteins, including thioredoxin reductase (part of the bacterial oxidative defence system), mainly in cells grown with linoleic acid without oxidative stress exposure, confirming that linoleic acid itself induces oxidative stress. 6 general oxidoreductases (class including dioxygenases and peroxidase) were found and therefore a deeper investigation on them could be productive in elucidating all steps involved in oxylipins biosynthesis in bacteria. Due to the multiple role of oxylipins (flavouring agents, antimicrobial compounds and interspecific signalling molecules) the identification of genes involved and regulating factors should have an important biotechnological impact, also allowing the overproduction of selected bioactive molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Benyvirus includes the most important and widespread sugar beet viruses transmitted through the soil by the plasmodiophorid Polymyxa betae. In particular Beet necrotic yellow vein virus (BNYVV), the leading infectious agent that affects sugar beet, causes an abnormal rootlet proliferation known as rhizomania. Beet soil-borne mosaic virus (BSBMV) is widely distributed in the United States and, up to date has not been reported in others countries. My PhD project aims to investigate molecular interactions between BNYVV and BSBMV and the mechanisms involved in the pathogenesis of these viruses. BNYVV full-length infectious cDNA clones were available as well as full-length cDNA clones of BSBMV RNA-1, -2, -3 and -4. Handling of these cDNA clones in order to produce in vitro infectious transcripts need sensitive and expensive steps, so I developed agroclones of BNYVV and BSBMV RNAs, as well as viral replicons allowing the expression of different proteins. Chenopodium quinoa and Nicotiana benthamiana plants have been infected with in vitro transcripts and agroclones to investigate the interaction between BNYVV and BSBMV RNA-1 and -2 and the behavior of artificial viral chimeras. Simultaneously I characterized BSBMV p14 and demonstrated that it is a suppressor of post-transcriptional gene silencing sharing common features with BNYVV p14.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of soil incorporation of 7 Meliaceae derivatives (6 commercial neem cakes and leaves of Melia azedarach L.) on C and N dynamics and on nutrient availability to micropropagated GF677 rootstock was investigated. In a first laboratory incubation experiment the derivatives showed different N mineralization dynamics, generally well predicted by their C:N ratio and only partly by their initial N concentration. All derivatives increased microbial biomass C, thus representing a source of C for the soil microbial population. Soil addition of all neem cakes (8 g kg-1) and melia leaves (16 g kg-1) had a positive effect on plant growth and increased root N uptake and leaf green colour of micropropagated plants of GF677. In addition, the neem cakes characterized by higher nutrient concentration increased P and K concentration in shoot and leaves 68 days after the amendment. In another experiment, soil incorporation of 15N labeled melia leaves (16 g kg-1) had no effect on the total amount of plant N, however the percentage of melia derived-N of treated plants ranged between 0.8% and 34% during the experiment. At the end of the growing season, about 7% of N added as melia leaves was recovered in plant, while 70% of it was still present in soil. Real C mineralization and the priming effect induced by the addition of the derivatives were quantified by a natural 13C abundance method. The real C mineralization of the derivatives ranged between 22% and 40% of added-C. All the derivatives studied induced a positive priming effect and, 144 days after the amendment, the amount of C primed corresponded to 26% of added-C, for all the derivatives. Despite this substantial priming effect, the C balance of the soil, 144 days after the amendment, always resulted positive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work particular attention was given to the study of secondary metabolites produced by some plants belonging to the Amaryllidaceae family, in the specific case isoquinoline alkaloids. At the first instance were characterized both qualitatively and quantitatively three different plants belonging to Amaryllidaceae family, such as: Crinum angustum Steud., Pancratium illyricum L., and Leucojum nicaeense Ard. The alkaloids extracts obtained were separately tested against enzymes involved in specific diseases or liable in multifactorial pathologies, like: MMPs, AChE,and PPO. From leaves extract of P.illyricum was isolated a new compound, 11α-hydroxy-O-methylleucotamine, with important role in AChE inbition. Considering the protection role against external bodies carried out by these metabolites in plant, extracts were also assayed against ATCC microorganisms and clinical isolates. Plants with promising pharmacological activities have been the basis for development of in vitro plant models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper critically examines the liberation theology of José Porfirio Miranda, as expressed in his Marx and the Bible (1971), with a focus on the central idea (and subtitle) of this work: the “Critique of the Philosophy of Oppression.” Miranda’s critique is examined via certain key tropes such as “power,” “justice,” and “freedom,” both in the context of late twentieth-century Latin American society, and in the state of the “post-Christian” and “post-Marxist” world more generally, vis-à-vis contemporary liberal justice theory. Close examination of the potentialities, paradoxes and subtle evasions in Miranda’s critique leads not to the conclusion that Miranda does not go far enough in his application of Christian principles to justice theory.