862 resultados para Planets and satellites: dynamical evolution and stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significance: The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. Recent Advances: The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. Critical Issues and Future Directions: The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unitary evolution and projective measurement are fundamental axioms of quantum mechanics. Even though projective measurement yields one of the eigenstates of the measured operator as the outcome, there is no theory that predicts which eigenstate will be observed in which experimental run. There exists only an ensemble description, which predicts probabilities of various outcomes over many experimental runs. We propose a dynamical evolution equation for the projective collapse of the quantum state in individual experimental runs, which is consistent with the well-established framework of quantum mechanics. In case of gradual weak measurements, its predictions for ensemble evolution are different from those of the Born rule. It is an open question whether or not suitably designed experiments can observe this alternate evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider cooperation situations where players have network relations. Networks evolve according to a stationary transition probability matrix and at each moment in time players receive payoffs from a stationary allocation rule. Players discount the future by a common factor. The pair formed by an allocation rule and a transition probability matrix is called a forward-looking network formation scheme if, first, the probability that a link is created is positive if the discounted, expected gains to its two participants are positive, and if, second, the probability that a link is eliminated is positive if the discounted, expected gains to at least one of its two participants are positive. The main result is the existence, for all discount factors and all value functions, of a forward-looking network formation scheme. Furthermore, we can always nd a forward-looking network formation scheme such that (i) the allocation rule is component balanced and (ii) the transition probabilities increase in the di erence in payo s for the corresponding players responsible for the transition. We use this dynamic solution concept to explore the tension between e ciency and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern wind turbines are designed in order to work in variable speed opera-tions. To perform this task, these turbines are provided with adjustable speed generators, like the double feed induction generator (DFIG). One of the main advantages of adjustable speed generators is improving the system efficiency compared with _xed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However, this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. The proposed design also uses the vector oriented control theory in order to simplify the DFIG dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and pa-rameter uncertainties using the Lyapunov stability theory. Finally, the simulated results show on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, which usually appear in real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed generators is improving the system efficiency compared to fixed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. An integral sliding surface is used, because the integral term avoids the use of the acceleration signal, which reduces the high frequency components in the sliding variable. The proposed design also uses the vector oriented control theory in order to simplify the generator dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and parameter uncertainties by using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, that usually appear in real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo da estabilidade das equações da inflação morna com um fluido de radiação viscoso. A viscosidade do fluido é proveniente do constante decaimento de partículas neste, devido à dissipação do campo escalar da inflação, o ínflaton.Esta viscosidade, que pode ser volumar ou laminar, é tratada em termos de teorias termodinâmicas fora do equilíbrio. Este estudo se limita às equações de fundo da inflação morna, de modo que somente a viscosidade volumar tem um efeito significativo, sendo a viscosidade laminar importante somente no contexto de perturbações cosmológicas. A descrição da viscosidade em termos de uma termodinâmica fora do equilíbrio, porém, não pode ser realizada univocamente, pois a única informação que temos sobre processos irreversíveis é a segunda lei da termodinâmica. Portanto, parte-se em busca de teorias que estejam de acordo com esta lei e que, por argumentos plausíveis, sejam capazes de descrever o comportamento dos fluxos dissipativos próximo ao equilíbrio. O objetivo deste trabalho é estudar a estabilidade da inflação morna viscosa para teorias causais e não causais para o fluido de radiação com viscosidade, de forma que se possa observar o impacto da viscosidade no regime inflacionário e a relevância de se passar a considerar a causalidade. Para o fluido de radiação, as teorias consideradas são a teoria não causal de Eckart e as teorias causais de Israel-Stewart e de Denicol et al (hidrodinâmica dissipativa causal não linear). Obtém-se que as teorias causais, como era de se esperar, além de serem, por definição, consistentes no tocante à finitude da velocidade de propagação dos fluxos dissipativos, tornam o sistema dinâmico estável para valores de viscosidade mais distantes do equilíbrio. Observa-se também, nitidamente, que a teoria de Denicol et al é a mais robusta nesse sentido. Este trabalho, portanto, visa dar continuidade ao estudo dos efeitos não-isentrópicos na inflação, já que, além da dissipação do ínflaton na inflação morna, o impacto da viscosidade tem despertado bastante interesse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial light modulators based around liquid crystal on silicon have found use in a variety of telecommunications applications, including the optimization of multimode fibers, free-space communications, and wavelength selective switching. Ferroelectric liquid crystals are attractive in these areas due to their fast switching times and high phase stability, but the necessity for the liquid crystal to spend equal time in each of its two possible states is an issue of practical concern. Using the highly parallel nature of a graphics processing unit architecture, it is possible to calculate DC balancing schemes of exceptional quality and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydraulic conductivity function of fractures is a key scientific question to describe and reveal the process and the role of water seepage reasonably. In this paper, the generation technology of random fracture network and the latest numerical computation method for equivalent permeability tensor of fracture network are applied to analyze the landslide located at Wangjiayuanzi in Wanzhou District of Chongqing by simulating the changes of the seepage field caused by the running of the Three Gorges Reservoir. The influences of the fracture seepage on the seepage field and stability of the landslide were discussed with emphasis. The results show that the fractures existing in the soil increase the permeability coefficient of the landslide body and reduce the delay time of the underground water level in the landslide which fluctuates relative to the water level of reservoir,that causes the safe coefficient of the slope changes more gently than that of the same slope without fractures. It means, if only water level fluctuating condition is concerned, the fractures existing in the soil plays a positive role to the stability of slopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By examining the changes in melting temperature, heat of fusion, tensile strength and ultimate elongation at 150-degrees-C, and weight loss, radiation effects on perfluoroalkoxy resins (PFA) were investigated. The results show that at the temperatures used here the predominant effect caused by radiation on PFA is degradation of the molecular weight. The radiation stability is much better than that of polytetrafluoroethylene, however.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a typical example of a polymer degraded by radiation, the radiation stability of PTFE was observed to depend upon irradiation conditions. Increases in irradiation temperature and crystallinity were found to increase its radiation stability whereas increase in the concentration of oxygen in the system over a certain range was observed to have little effect on radiation-induced reactions of PTFE as measured by changes in number-average molecular weight, melting temperature and crystallinity.