998 resultados para Physics, Particles
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
Due to their spatial structure virus-like particles (VLPs) generally induce effective immune responses. VLPs derived from the small envelope protein (HBsAg-S) of hepatitis B virus (HBV) comprise the HBV vaccine. Modified HBsAs-S VLPs, carrying the immunodominant hypervariable region (HVR1) of the hepatitis C virus (HCV) envelope protein E2 within the exposed 'a'-determinant region (HBsAg/HVR1-VLPs), elicited HVR1-specific antibodies in mice. A high percentage of the human population is positive for anti-HBsAg antibodies (anti-HBs), either through vaccination or natural infection. We, therefore, determined if pre-existing anti-HBs could influence immunisation with modified VLPs. Mice were immunised with a commercial HBV vaccine, monitored to ensure an anti-HBs response, then immunised with HBsAg/HVR1-VLPs. The resulting anti-HVR1 antibody titre was similar in mice with or without pre-existing anti-HBs. This suggests that HBsAg/HVR1-VLPs induce a primary immune response to HVR1 in anti-HBs positive mice and, hence, they may be used successfully in individuals already immunised with the HBV vaccine. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Human papillomaviruses (HPVs) infect epithelial cells and are associated with genital carcinoma. Most epithelial cell lines express cell-surface glycosaminoglycans (GAGs) usually found attached to the protein core of proteoglycans. Our aim was to study how GAGs influenced HPV entry. Using a human keratinocyte cell line (HaCaT), preincubation of HPV virus-like particles (VLPs) with GAGs showed a dose-dependent inhibition of binding. The IC50 (50% inhibition) was only 0.5 mug/ml for heparin, 1 mug/ml for dextran sulfate, and 5-10 mug/ml for heparan sulfate from mucosal origin. Mutated chinese hamster ovary (CHO) cell lines lacking heparan sulfate or all GAGs were unable to bind HPV VLPs. Here we also report a method to study internalization by using VLPs labeled with carboxy-fluorescein diacetate, succinimidyl ester, a fluorochrome that is only activated after cell entry. Pretreatment of labeled HPV VLPs with heparin inhibited uptake, suggesting a primary interaction between HPV and cell-surface heparan sulfate. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 μm2/cm3, which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles. Implications: The approach of this study considers the measurement of surface deposited alveolar area of particles in the outdoor urban environment of Lisbon, Portugal. This type of measurements has not been done so far. Only particulate matter with aerodynamic diameters <2.5 (PM2.5) and >10 (PM10) μm have been measured in outdoor environments and the levels found cannot be found responsible for all the observed health effects. Therefore, the exposure to nano- and ultrafine particles has not been assessed systematically, and several authors consider this as a real knowledge gap and claim for data such as these that will allow for deriving better and more comprehensive epidemiologic studies. Nanoparticle surface area monitor (NSAM) equipments are recent ones and their use has been limited to indoor atmospheres. However, as this study shows, NSAM is a very powerful tool for outdoor environments also. As most lung diseases are, in fact, related to deposition of the alveolar region of the lung, the metric used in this study is the ideal one.
Resumo:
The idea of grand unification in a minimal supersymmetric SU(5) x SU(5) framework is revisited. It is shown that the unification of gauge couplings into a unique coupling constant can be achieved at a high-energy scale compatible with proton decay constraints. This requires the addition of minimal particle content at intermediate energy scales. In particular, the introduction of the SU(2)(L) triplets belonging to the (15, 1)+((15) over bar, 1) representations, as well as of the scalar triplet Sigma(3) and octet Sigma(8) in the (24, 1) representation, turns out to be crucial for unification. The masses of these intermediate particles can vary over a wide range, and even lie in the TeV region. In contrast, the exotic vector-like fermions must be heavy enough and have masses above 10(10) GeV. We also show that, if the SU(5) x SU(5) theory is embedded into a heterotic string scenario, it is not possible to achieve gauge coupling unification with gravity at the perturbative string scale.
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.
Resumo:
Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Tevatron has measured a discrepancy relative to the standard model prediction in the forward-backward asymmetry in top quark pair production. This asymmetry grows with the rapidity difference of the two top quarks. It also increases with the invariant mass of the t (t) over bar pair, reaching, for high invariant masses, 3.4 standard deviations above the next-to-leading order prediction for the charge asymmetry of QCD. However, perfect agreement between experiment and the standard model was found in both total and differential cross section of top quark pair production. As this result could be a sign of new physics we have parametrized this new physics in terms of a complete set of dimension six operators involving the top quark. We have then used a Markov chain Monte Carlo approach in order to find the best set of parameters that fits the data, using all available data regarding top quark pair production at the Tevatron. We have found that just a very small number of operators are able to fit the data better than the standard model.
Resumo:
The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 μm2/cm3, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM(10) patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 µm(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.