1000 resultados para Photo novel
Resumo:
Azole resistance in Candida albicans can be mediated by the upregulation of the ATP binding cassette transporter genes CDR1 and CDR2. Both genes are regulated by a cis-acting element called the drug-responsive element (DRE), with the consensus sequence 5'-CGGAWATCGGATATTTTTTT-3', and the transcription factor Tac1p. In order to analyze in detail the DRE sequence necessary for the regulation of CDR1 and CDR2 and properties of TAC1 alleles, a one-hybrid system was designed. This system is based on a P((CDR2))-HIS3 reporter system in which complementation of histidine auxotrophy can be monitored by activation of the reporter system by CDR2-inducing drugs such as estradiol. Our results show that most of the modifications within the DRE, but especially at the level of CGG triplets, strongly reduce CDR2 expression. The CDR2 DRE was replaced by putative DREs deduced from promoters of coregulated genes (CDR1, RTA3, and IFU5). Surprisingly, even if Tac1p was able to bind these putative DREs, as shown by chromatin immunoprecipitation, those from RTA3 and IFU5 did not functionally replace the CDR2 DRE. The one-hybrid system was also used for the identification of gain-of-function (GOF) mutations either in TAC1 alleles from clinical C. albicans isolates or inserted in TAC1 wild-type alleles by random mutagenesis. In all, 17 different GOF mutations were identified at 13 distinct positions. Five of them (G980E, N972D, A736V, T225A, and N977D) have already been described in clinical isolates, and four others (G980W, A736T, N972S, and N972I) occurred at already-described positions, thus suggesting that GOF mutations can occur in a limited number of positions in Tac1p. In conclusion, the one-hybrid system developed here is rapid and powerful and can be used for characterization of cis- and trans-acting elements in C. albicans.
Resumo:
Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.
Resumo:
BACKGROUND: Colonic endoscopic submucosal dissection (ESD) is challenging as a result of the limited ability of conventional endoscopic instruments to achieve traction and exposure. The aim of this study was to evaluate the feasibility of colonic ESD in a porcine model using a novel endoscopic surgical platform, the Anubiscope (Karl Storz, Tüttlingen, Germany), equipped with two working channels for surgical instruments with four degrees of freedom offering surgical triangulation. METHODS: Nine ESDs were performed by a surgeon without any ESD experience in three swine, at 25, 15, and 10 cm above the anal verge with the Anubiscope. Sixteen ESDs were performed by an experienced endoscopist in five swine using conventional endoscopic instruments. Major ESD steps included the following for both groups: scoring the area, submucosal injection of glycerol, precut, and submucosal dissection. Outcomes measured were as follows: dissection time and speed, specimen size, en bloc dissection, and complications. RESULTS: No perforations occurred in the Anubis group, while there were eight perforations (50 %) in the conventional group (p = 0.02). Complete and en bloc dissections were achieved in all cases in the Anubis group. Mean dissection time for completed cases was statistically significantly shorter in the Anubis group (32.3 ± 16.1 vs. 55.87 ± 7.66 min; p = 0.0019). Mean specimen size was higher in the conventional group (1321 ± 230 vs. 927.77 ± 229.96 mm(2); p = 0.003), but mean dissection speed was similar (35.95 ± 18.93 vs. 23.98 ± 5.02 mm(2)/min in the Anubis and conventional groups, respectively; p = 0.1). CONCLUSIONS: Colonic ESDs were feasible in pig models with the Anubiscope. This surgical endoscopic platform is promising for endoluminal surgical procedures such as ESD, as it is user-friendly, effective, and safe.
Resumo:
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Resumo:
Esters and amino acid derivatives of 5-aminolevulinic acid (ALA) are efficient prodrugs for the production of protoporphyrin IX (PpIX), which has been used in photodynamic cancer therapy (PDT). The synthesis of novel bioconjugates combining ALA with adenosine and thymidine is reported. The novel bioconjugates have been made using a robust methodology. The new class of prodrugs contains one, two, or three ALA per molecule. Preliminary cell tests in human cancer cell lines indicate that the thymidine conjugate of ALA is an efficient prodrug for PDT.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease isnot only an essential component of the viral replication complexand a prime target for antiviral intervention but also a key playerin the persistence and pathogenesis of HCV. It cleaves andthereby inactivates two crucial adaptor proteins in viral RNAsensing and innate immunity (MAVS and TRIF) as well as aphosphatase involved in growth factor signaling (TC-PTP). Theaim of this ongoing study is to identify novel cellular targets ofthe NS3-4A protease.Methods: Cell lines inducibly expressing the NS3-4A proteasewere established using a tetracycline-regulated geneexpression system. Cells were analyzed in basal as well asinterferon-α-stimulated states. Two-dimensional difference gelelectrophoresis (2D-DIGE) and stable isotopic labeling usingamino acids in cell culture (SILAC) proteomics analysescoupled with mass spectrometry were employed to search forcellular substrates of NS3-4A.Results: A number of candidate cellular targets have beenidentified by these proteomics approaches. These are currentlybeing validated by different experimental techniques. In parallel,we are in the process of further defining the determinants forsubstrate specificity of the NS3-4A protease.Conclusions: The identification of novel cellular targets of theHCV NS3-4A protase should yield new insights into thepathogenesis of hepatitis C and may reveal novel targets forantiviral intervention.
Resumo:
Genome-wide association studies (GWAS) are conducted with the promise to discover novel genetic variants associated with diverse traits. For most traits, associated markers individually explain just a modest fraction of the phenotypic variation, but their number can well be in the hundreds. We developed a maximum likelihood method that allows us to infer the distribution of associated variants even when many of them were missed by chance. Compared to previous approaches, the novelty of our method is that it (a) does not require having an independent (unbiased) estimate of the effect sizes; (b) makes use of the complete distribution of P-values while allowing for the false discovery rate; (c) takes into account allelic heterogeneity and the SNP pruning strategy. We applied our method to the latest GWAS meta-analysis results of the GIANT consortium. It revealed that while the explained variance of genome-wide (GW) significant SNPs is around 1% for waist-hip ratio (WHR), the observed P-values provide evidence for the existence of variants explaining 10% (CI=[8.5-11.5%]) of the phenotypic variance in total. Similarly, the total explained variance likely to exist for height is estimated to be 29% (CI=[28-30%]), three times higher than what the observed GW significant SNPs give rise to. This methodology also enables us to predict the benefit of future GWA studies that aim to reveal more associated genetic markers via increased sample size.
Resumo:
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Resumo:
The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = -0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.
Resumo:
The dermatophytes are a group of closely related fungi which are responsible for the great majority of superficial mycoses in humans and animals. Among various potential virulence factors, their secreted proteolytic activity attracts a lot of attention. Most dermatophyte-secreted proteases which have so far been isolated in vitro are neutral or alkaline enzymes. However, inspection of the recently decoded dermatophyte genomes revealed many other hypothetical secreted proteases, in particular acidic proteases similar to those characterized in Aspergillus spp. The validation of such genome predictions instigated the present study on two dermatophyte species, Microsporum canis and Arthroderma benhamiae. Both fungi were found to grow well in a protein medium at acidic pH, accompanied by extracellular proteolysis. Shotgun MS analysis of secreted protein revealed fundamentally different protease profiles during fungal growth in acidic versus neutral pH conditions. Most notably, novel dermatophyte-secreted proteases were identified at acidic pH such as pepsins, sedolisins and acidic carboxypeptidases. Therefore, our results not only support genome predictions, but demonstrate for the first time the secretion of acidic proteases by dermatophytes. Our findings also suggest the existence of different pathways of protein degradation into amino acids and short peptides in these highly specialized pathogenic fungi.
Resumo:
BACKGROUND: Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution. RESULTS: We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways. CONCLUSIONS: These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome.
Resumo:
Recent advances have allowed the development of new physical techniques in neurology and psychiatry, such as Transcranial Magnetic Stimulation (TMS), Vagus Nerve Stimulation (VNS), and Deep Brain Stimulation (DBS). These techniques are already recognized as therapeutic approaches in several late stage refractory neurological disorders (Parkinson's disease, tremor, epilepsy), and currently investigated in psychiatric conditions, refractory to medical treatment (obsessive-compulsive disorder, resistant major depression). In Paralell, these new techniques offer a new window to understand the neurobiology of human behavior.
Resumo:
Methylene blue (MB) and light are used for virus inactivation of plasma for transfusion. However, the presence of MB has been the subject of concern, and efforts have been made to efficiently remove the dye after photo-treatment. For this study, plasma was collected by apheresis from 10 donors (group A), then treated using the MacoPharma THERAFLEX procedure (MB; 1 microM, and light exposure; 180 J/cm(2)) (group B), and finally filtered in order to remove the dye (group C). Proteins were analyzed by two-dimensional electrophoresis, and peptides showing modifications were characterized by mass spectrometry. Clottable and antigenic fibrinogen levels, as well as fibrin polymerization time were measured. Analyses of the gels focused on a region corresponding to pI between 4.5 and 6.5, and M(r) from 7000 to 58 000. In this area, 387 +/- 47 spots matched, and four of these spots presented significant modifications. They corresponded to changes of the gamma-chain of fibrinogen, of transthyretin, and of apolipoprotein A-I, respectively. A decrease of clottable fibrinogen and a prolongation of fibrin polymerization time were observed in groups B and C. Removal of MB by filtration was not responsible for additional protein alterations. The effect of over-treatment of plasma by very high concentrations of MB (50 microM) in association with prolonged light exposure (3 h) was also analyzed, and showed complex alterations of most of the plasma proteins, including fibrinogen gamma-chain, transthyretin, and apolipoprotein A-I. Our data indicates that MB treatment at high concentration and prolonged illumination severely injure plasma proteins. By contrast, at the MB concentration used to inactivate viruses, damages are apparently very restricted.
Resumo:
Peer-reviewed