987 resultados para Philostratus, Flavius, ca. 170-ca. 245.
Resumo:
The Western Boundary Undercurrent (WBUC), off eastern America, is an important component of the Atlantic Meridional Overturning circulation and is the principal route for southward transport of North Atlantic waters and southward return of Southern Source Water (SSW). Here a direct flow speed proxy (mean grain size of the sortable silt) is used to infer the vigour of flow of the palaeo-WBUC at Blake Outer Ridge, (ODP Site 1060, depth 3481 m) during Marine Isotope Stage (MIS) 3. The overall shape of the flow speed proxy record shows a complex pattern of variability, with generally more vigorous flow and larger-scale flow variations between 35 and 60 ka than in the younger part of MIS 3 and MIS 2 (b35 ka). Six events of reduced bottom flow vigour (Slow Events, SEs) occur. These appear uncorrelated with Heinrich events, but are instead synchronous with the warming phases of Antarctic Warm Events A-1 to A-4 (with one new one, A-1a and one poorly defined, 'A-0'). This indicates that Antarctic climate exerts a stronger control on deep flow vigour in the North Atlantic during MIS 3 than Northern Hemisphere climate. The correspondence of SEs with Antarctic warming suggests a weaker WBUC flow due to reduced volume flux at SSW source or reduced SSW density. Because the variability of the lower limb of the WBUC was not connected to sharp North Atlantic changes in temperature, it is unlikely that the Dansgaard/Oeschger cycles were associated with a mode of MOC variation involving wholeocean overturn, but more likely with perturbations of only the shallow Glacial Gulf Stream-Glacial Northern Source Intermediate Water cell. Nutrient proxies (benthic carbon isotopes and Cd/Ca of Uvigerina peregrina) at this site show similar trends to the GRIP delta18O record. This correlation has previously been attributed mainly to hydrographic and flow changes but is here shown to be better explained by variations in surface ocean productivity and subsequent decomposition of 12C rich organic material on the sea floor.
Resumo:
The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial-interglacial (G-IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and d18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G-IG Marine Isotope Stages (MIS 95-100, ~2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60-90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5°C at Site 1241, but increases of up to 3°C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3°C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and d18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East-Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the Intertropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.
Resumo:
Core-top samples from different ocean basins have been analyzed to refine our current understanding of the sensitivity of benthic foraminiferal calcite magnesium/calcium (Mg/Ca) to bottom water temperatures (BWT). Benthic foraminifera collected from Hawaii, Little Bahama Bank, Sea of Okhotsk, Gulf of California, NE Atlantic, Ceara Rise, Sierra Leone Rise, the Ontong Java Plateau, and the Southern Ocean covering a temperature range of 0.8 to 18°C were used to revise the Cibicidoides Mg/Ca-temperature calibration. The Mg/Ca-BWT relationship of three common Cibicidoides species is described by an exponential equation: Mg/Ca = 0.867 ± 0.049 exp (0.109 ± 0.007 * BWT) (stated errors are 95% CI). The temperature sensitivity is very similar to a previously published calibration. However, the revised calibration has a significantly different preexponential constant, resulting in different predicted absolute temperatures. We attribute this difference in the preexponential constant to an analytical issue of accuracy. Some genera, notably Uvigerina, show apparently lower temperature sensitivity than others, suggesting that the use of constant offsets to account for vital effects in Mg/Ca may not be appropriate. Downcore Mg/Ca reproducibility, as determined on replicate foraminiferal samples, is typically better than 0.1 mmol/mol (2 S.E.). Thus, considering the errors associated with the Cibicidoides calibration and the downcore reproducibility, BWT may be estimated to within ±1°C. Application of the revised core-top Mg/Ca-BWT data to Cenozoic foraminiferal Mg/Ca suggests that seawater Mg/Ca was not more than 35% lower than today in the ice-free ocean at 50 Ma.