871 resultados para Peroxycarboxylic acids
Resumo:
The correlations between chemical composition and coefficient of standardized ileal digestibility (CSID) of crude protein (CP) and amino acids (AA) were determined in 22 soybean meal (SBM) samples originated from USA (n = 8), Brazil (BRA; n = 7) and Argentina (ARG; n = 7) in 21-day old broilers. Birds were fed a commercial maize-SBM diet from 1 to 17 days of age followed by the experimental diets in which the SBM tested was the only source of protein (205 g CP/kg) for three days. Also, in vitro nitrogen (N) digestion study was conducted with these samples using the two-step enzymatic method. The coefficient of apparent ileal digestibility (CAID) of the SBM, independent of the origin, varied from 0.820 to 0.880 for CP, 0.850 to 0.905 for lysine (Lys), 0.859 to 0.907 for methionine (Met) and 0.664 to 0.750 for cysteine (Cys). The corresponding CSID values varied from 0.850 to 0.966 for CP, 0.891 to 0.940 for Lys, 0.931 to 0.970 for Met and 0.786 to 0.855 for Cys. The CSID of CP and Lys of the SBM were positively correlated with CP (r = 0.514; P menor que 0.05 and r = 0.370; P = 0.09, respectively), KOH solubility (KOH sol.) (r = 0.696; P menor que 0.001 and r = 0.619; P menor que 0.01, respectively), trypsin inhibitor activity (TIA) (r = 0.541; P menor que 0.01 and r = 0.416; P = 0.05, respectively) and reactive Lys (r = 0.563; P menor que 0.01 and r = 0.486; P menor que 0.05) values, but no relation was observed with neutral detergent fiber and oligosaccharide content. No relation between the CSID of CP determined in vivo and N digestibility determined in vitro was found. The CSID of most key AA were higher for the USA and the BRA meals than for the ARG meals. For Lys, the CSID was 0.921, 0.919 and 0.908 (P menor que 0.05) and for Cys 0.828, 0.833 and 0.800 (P menor que 0.01) for USA, BRA and ARG meals, respectively. It is concluded that under the conditions of this experiment, the CSID of CP and Lys increased with CP content, KOH sol., TIA and reactive Lys values of the SBM. The CSID of most limiting AA, including Lys and Cys, were higher for USA and BRA meals than for ARG meals.
Resumo:
Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water -control-, chenodeoxycholic acid -CDC; 60mg/kg body weight-, or b-sitoesterol -BSE; 100 mg/kg body weight-. Infusing CDC increased plasma GLP-2 -P menor que 0.05- but did not affect plasma GLP-1 and feed intake. The intestinal expression of Glp2r -glucagon-like peptide 2 receptor-, Asbt -sodium-dependent bile acid transporter-, Fxr -farnesoid X receptor-, and Tgr5 -guanosine protein?coupled bile acid receptor- genes were not affected by CDC treatment. The intragastric administration of CDC did not alter the weight and length of the intestine, yet increased the activation of caspase-3 in ileal villi -P menor que 0.02- and the expression of Il6 -interleukin 6; P menor que 0.002- in the jejunum. In contrast, infusing BSE did not affect any of the variables that were measured. Our results show that the enteral administration of the bile acid CDC potentiates the nutrient-induced secretion of endogenous GLP-2 in early-weaned pigs. Bile acid?enhanced release of GLP-2, however, did not result in improved intestinal growth, morphology, or inflammation during the postweaning degenerative phase.
Resumo:
In the past, mining wastes were left wherever they might lie in the surroundings of the mine area. Unfortunately, inactive and abandoned mines continue to pollute our environment, reason why these sites should be restored with minimum impact. Phytoextraction is an environmental-friendly and cost-effective technology less harmful than traditional methods that uses metal hyperaccumulator or at least tolerant plants to extract heavy metals from polluted soils. One disadvantage of hyperaccumulator species is their slow growth rate and low biomass production. Vetiveria zizanioides (L.) Nash, perennial species adapted to Mediterranean climate has a strong root system which can reach up to 3 m deep, is fast growing, and can survive in sites with high metal levels (Chen et al., 2004). Due to the fact that metals in abandoned mine tailings become strongly bonded to soil solids, humic acids used as chelating agents could increase metal bioavailability (Evangelou et al., 2004; Wilde et al., 2005) and thereby promote higher accumulation in the harvestable parts of the plant. The objective of this study was to examine the performance of humic acid assisted phytoextraction using Vetiveria zizanioides (L.) Nash in heavy metals contaminated soils.
Resumo:
The effect of a diet enriched with polyunsaturated n -3 fatty acids (PUFA) on endocrine, reproductive, and productive responses of rabbit females and the litters has been studied. Nulliparous does ( n = 125) were fed ad libitum from rearing to second weaning two diets supplemented with different fat sources: 7.5 g/kg lard for the control diet (group C; n = 63) or 15 g/kg of a commercial supplement containing a 50% ether extract and 35% of total fatty acids (FAs) as PUFA n -3 (Group P; n = 62). Dietary treatments did not affect apparent digestibility coefficients of nutrients, or reproductive variables of does including milk pro- duction, mortality and average daily gain of kits over two lactations. However, on Day 5 and 7 post-induction of ovulation, progesterone of Group P tended to increase to a greater extent than in does of Group C. Total PUFAs, n -6 and n -3 and eicosapentanoic (EPA) contents were greater in adipose tissues of does in Group P than in Group C. Docosapentaenoic acid (DPA), EPA, and docosahexaenoic acid (DHA) concentrations were greater in peri-ovarian than in scapular fat with abdominal fat being intermediate in concentration. In PUFA sup- plemented does, kit mortality at the second parturition tended to be less than in control does. Also, kits born to does of the PUFA-supplemented group weighed more and were of greater length than from does of control group. In conclusion, effectiveness of dietary intervention on reproductive and performance response is greater in the second parity, which suggests an accumulative long-term beneficial effect of n -3 FA supplementation in reproductive rabbit does
Resumo:
The aim of this study was to establish the relationships between faecal fat concentration and gaseous emissions from pig slurry. Five diets were designed to meet essential nutrient requirements: a control and four experimental feeds including two levels (35 or 70 g/kg) of calcium soap fatty acids distillate (CSP) and 0 or 200 g/kg of orange pulp (OP) combined in a 2 × 2 factorial structure. Thirty growing pigs (six per treatment) were used to measure dry matter (DM) and N balance, coefficients of total tract apparent digestibility (CTTAD) of nutrients, faecal and urine composition and potential emissions of ammonia (NH3) and methane (CH4). Increasing dietary CSP level decreased DM, ether extract (EE) and crude protein (CP) CTTAD (by 4.0, 11.1 and 3.5%, respectively, P < 0.05), but did not influence those of fibrous constituents. It also led to a decrease (from 475 to 412 g/kg DM, P < 0.001) of faecal concentration of neutral detergent fibre (aNDFom) and to an increment (from 138 to 204 g/kg, P < 0.001) of EE in faecal DM that was related to greater CH4 emissions, both per gram of organic matter (P = 0.021) or on a daily basis (P < 0.001). Level of CSP did not affect N content in faeces or urine, but increased daily DM (P < 0.001), and N (P = 0.031) faecal excretion with no effect on urine N excretion. This resulted in lesser (P = 0.036) NH3 potential emission per kg of slurry. Addition of OP decreased CTTAD of EE (by 7.9%, P = 0.044), but increased (P < 0.05) that of all the fibrous fractions. As a consequence, faecal EE content increased (from 165 to 177 g/kg DM; P = 0.012), and aNDFom decreased greatly (from 483 to 404 g/kg DM, P < 0.001), which in all resulted in a lack of effect of OP on CH4 potential emission. Inclusion of OP in the diet also led to a significant decrease of CP CTTAD (by 6.85%, P < 0.001), and to an increase of faecal CP concentration (from 174 to 226 g/kg DM, P < 0.001), with no significant influence on urine N content. These effects resulted in higher N faecal losses, especially those of the undigested dietary origin, without significant effects on potential NH3 emission. No significant interactions between CSP and OP supplementation were observed for the gaseous emissions measured.
Resumo:
Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches.
Resumo:
The understanding of the molecular mechanisms leading to peptide action entails the identification of a core active site. The major 28-aa neuropeptide, vasoactive intestinal peptide (VIP), provides neuroprotection. A lipophilic derivative with a stearyl moiety at the N-terminal and norleucine residue replacing the Met-17 was 100-fold more potent than VIP in promoting neuronal survival, acting at femtomolar–picomolar concentration. To identify the active site in VIP, over 50 related fragments containing an N-terminal stearic acid attachment and an amidated C terminus were designed, synthesized, and tested for neuroprotective properties. Stearyl-Lys-Lys-Tyr-Leu-NH2 (derived from the C terminus of VIP and the related peptide, pituitary adenylate cyclase activating peptide) captured the neurotrophic effects offered by the entire 28-aa parent lipophilic derivative and protected against β-amyloid toxicity in vitro. Furthermore, the 4-aa lipophilic peptide recognized VIP-binding sites and enhanced choline acetyltransferase activity as well as cognitive functions in Alzheimer’s disease-related in vivo models. Biodistribution studies following intranasal administration of radiolabeled peptide demonstrated intact peptide in the brain 30 min after administration. Thus, lipophilic peptide fragments offer bioavailability and stability, providing lead compounds for drug design against neurodegenerative diseases.
Resumo:
Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.
Resumo:
In the maximum parsimony (MP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and A for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the ML tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.
Resumo:
Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion.
Resumo:
In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an “orthogonal” suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)–tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase–tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein–tRNA interface and at sites further away, is discussed.
Resumo:
Mycobacterium tuberculosis produces three classes of mycolic acids that differ primarily in the presence and nature of oxygen-containing substituents in the distal portion of the meromycolate branch. The methoxymycolate series has a methoxy group adjacent to a methyl branch, in addition to a cyclopropane in the proximal position. Using the gene for the enzyme that introduces the distal cyclopropane (cma1) as a probe, we have cloned and sequenced a cluster of genes coding for four highly homologous methyl transferases (mma1–4). When introduced into Mycobacterium smegmatis, this gene cluster conferred the ability to synthesize methoxymycolates. By determining the structure of the mycolic acids produced following expression of each of these genes individually and in combination, we have elucidated the biosynthetic steps responsible for the production of the major series of methoxymycolates. The mma4 gene product (MMAS-4) catalyzes an unusual S-adenosyl-l-methionine-dependent transformation of the distal cis-olefin into a secondary alcohol with an adjacent methyl branch. MMAS-3 O-methylates this secondary alcohol to form the corresponding methyl ether, and MMAS-2 introduces a cis-cyclopropane in the proximal position of the methoxy series. The similarity of these reactions and the enzymes that catalyze them suggests that some of the structural diversity of mycolic acids results from different chemical fates of a common cationic intermediate, which in turn results from methyl group addition to an olefinic mycolate precursor.
Resumo:
The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 → Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 → Ala or Phe13 → Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.
Resumo:
Certain aminoacyl-tRNA synthetases have a second active site that destroys (by hydrolysis) errors of amino acid activation. For example, isoleucyl-tRNA synthetase misactivates valine (to produce valyl adenylate or Val-tRNAIle) at its active site. The misactivated amino acid is then translocated to an editing site located >25 Å away. The role of the misactivated amino acid in determining the rate of translocation is not known. Valyl-tRNA synthetase, a close homolog of isoleucyl-tRNA synthetase, misactivates threonine, α-aminobutyrate, and cysteine. In this paper, we use a recently developed fluorescence-energy-transfer assay to study translocation of misactivated threonine, α-aminobutyrate, and cysteine. Although their rates of misactivation are clearly distinct, their rates of translocation are similar. Thus, the rate of translocation is independent of the nature of the misactivated amino acid. This result suggests that the misactivated amino acid per se has little or no role in directing translocation.
Resumo:
Insufficient efficacy and/or specificity of antisense oligonucleotides limit their in vivo usefulness. We demonstrate here that a high-affinity DNA analog, locked nucleic acid (LNA), confers several desired properties to antisense agents. Unlike DNA, LNA/DNA copolymers were not degraded readily in blood serum and cell extracts. However, like DNA, the LNA/DNA copolymers were capable of activating RNase H, an important antisense mechanism of action. In contrast to phosphorothioate-containing oligonucleotides, isosequential LNA analogs did not cause detectable toxic reactions in rat brain. LNA/DNA copolymers exhibited potent antisense activity on assay systems as disparate as a G-protein-coupled receptor in living rat brain and an Escherichia coli reporter gene. LNA-containing oligonucleotides will likely be useful for many antisense applications.