993 resultados para Perfused Rat Hindlimb


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain damage caused by an acute injury depends on the initial severity of the injury and the time elapsed after the injury. To determine whether these two variables activate common mechanisms, we compared the response of the rat medial septum to insult with a graded series of concentrations of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) with the time-course effects of a low dose of AMPA. For this purpose we conducted a dose-response study at concentrations of AMPA between 0.27 and 10.8 nmol to measure atrophy of the septal area, losses of cholinergic and GABAergic neurons, astroglial and microglial reactions, and calcification. Cholinergic neurons, whose loss paralleled the degree of septal atrophy produced by AMPA, are more sensitive than GABAergic neurons to the injury produced by AMPA. At doses of AMPA above 2.7 nmol, calcification and the degree of microglial reaction increased only in the GABAergic region of the septal area, whereas atrophy and neuronal loss reached a plateau. We chose the 2.7-nmol dose of AMPA to determine how these parameters were modified between 4 days and 6 months after injection. We found that atrophy and neuronal loss increased progressively through the 6-month study period, whereas astrogliosis ceased to be observed after 1 month, and calcium precipitates were never detected. We conclude that septal damage does not increase with the intensity of an excitotoxic insult. Rather, it progresses continuously after the insult. Because these two situations involve different mechanisms, short-term paradigms are inappropriate for interpreting the pathogenic mechanisms responsible for long-term neurodegenerative processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the Predict-IV FP7 project a strategy for measurement of in vitro biokinetics was developed, requiring the characterization of the cellular model used, especially regarding biotransformation, which frequently depends on cytochrome P450 (CYP) activity. The extrahepatic in situ CYP-mediated metabolism is especially relevant in target organ toxicity. In this study, the constitutive mRNA levels and protein localization of different CYP isoforms were investigated in 3D aggregating brain cell cultures. CYP1A1, CYP2B1/B2, CYP2D2/4, CYP2E1 and CYP3A were expressed; CYP1A1 and 2B1 represented almost 80% of the total mRNA content. Double-immunolabeling revealed their presence in astrocytes, in neurons, and to a minor extent in oligodendrocytes, confirming the cell-specific localization of CYPs in the brain. These results together with the recently reported formation of an amiodarone metabolite following repeated exposure suggest that this cell culture system possesses some metabolic potential, most likely contributing to its high performance in neurotoxicological studies and support the use of this model in studying brain neurotoxicity involving mechanisms of toxication/detoxication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune system is involved in the development of neuropathic pain. In particular, the infiltration of T-lymphocytes into the spinal cord following peripheral nerve injury has been described as a contributor to sensory hypersensitivity. We used the spared nerve injury (SNI) model of neuropathic pain in Sprague Dawley adult male rats to assess proliferation, and/or protein/gene expression levels for microglia (Iba1), T-lymphocytes (CD2) and cytotoxic T-lymphocytes (CD8). In the dorsal horn ipsilateral to SNI, Iba1 and BrdU stainings revealed microglial reactivity and proliferation, respectively, with different durations. Iba1 expression peaked at D4 and D7 at the mRNA and protein level, respectively, and was long-lasting. Proliferation occurred almost exclusively in Iba1 positive cells and peaked at D2. Gene expression observation by RT-qPCR array suggested that T-lymphocytes attracting chemokines were upregulated after SNI in rat spinal cord but only a few CD2/CD8 positive cells were found. A pronounced infiltration of CD2/CD8 positive T-cells was seen in the spinal cord injury (SCI) model used as a positive control for lymphocyte infiltration. Under these experimental conditions, we show early and long-lasting microglia reactivity in the spinal cord after SNI, but no lymphocyte infiltration was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the reproductive disorders that emerge in adulthood have their origin during fetal development. Numerous studies have demonstrated that exposure to endocrine disrupting chemicals can permanently affect the reproductive health of experimental animals. In mammals, male sexual differentiation and development are androgen-dependent processes. In rat, the critical programming window for masculinization occurs between embryonic days (EDs) 15.5 and 19.5. Disorders in sex steroid balance during fetal life can disturb the development of the male reproductive tract. In addition to the fetal testis, the adrenal cortex starts to produce steroid hormones before birth. Glucocorticoids produced by the adrenal cortex are essential for preparing the fetus for birth. In the present study, the effects of exposure to endocrine disrupters on fetal male rat testicular and adrenal development were investigated. To differentiate the systemic and direct testicular effects of endocrine disrupters, both in vivo and in vitro experiments were performed. The present study also clarified the role of desert hedgehog signalling (Dhh) in the development of the testis. The results indicate that endocrine disrupters, diethylstilbestrol (DES) and flutamide, are able to induce rapid steroidogenic changes in fetal rat testis under in vitro conditions. Although in utero exposure to these chemicals did not show overt effects in fetal testis, they can induce permanent changes in the developing testis and accessory sex organs later in life. We also reported that exposure to antiandrogens can interfere with testicular Dhh signalling and result in impaired differentiation of the fetal Leydig cells and subsequently lead to abnormal testicular development and sexual differentiation. In utero exposure to tetrachlorodibenzo-p-dioxin (TCDD) caused direct testicular and pituitary effects on the fetal male rat but with different dose responses. In a study in which the effects of developmental exposure to environmental antiandrogens, di-isononylphthalate and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p-DDE), on fetal male rat steroidogenesis were investigated, chemicals did not down-regulate testicular or adrenal steroid hormone synthesis or production in 19.5-day-old fetal rats. However, p,p-DDE-treatment caused clear histological and ultrastructural changes in the prenatal testis and adrenal gland. These structural alterations can disturb the development and function of fetal testis and adrenal gland that may become evident later in life. Exposure to endocrine disrupters during fetal life can cause morphological abnormalities and alter steroid hormone production by fetal rat Leydig cells and adrenocortical cells. These changes may contribute to the maldevelopment of the testis and the adrenal gland. The present study highlights the importance of the fetal period as a sensitive window for endocrine disruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid HPLC analytical method was developed and validated for the determination of the N-phenylpiperazine derivative LASSBio-579in plasma rat. Analyses were performed using a C18 column and elution with 20 mM sodium dihydrogen phosphate monohydrate - methanol. The analyte was monitored using a photodiode array detector (257 nm). Calibration curves in spiked plasma were linear over the concentration range of 0.3-8 mg/mL with determination coefficient > 0.99. The lower limit of quantification was 0.3 mg/mL. The applicability of the HPLC method for pharmacokinetic studies was tested using plasma samples obtained after administration of LASSBio-579 to Wistar rats, showing the specificity of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piplartine (PPTN) is an alkaloid amide found in Piper species that presents different activities. PPTN determination in rat plasma is necessary to better understand its biological effects. The aim of this study was to develop a sensitive LC-MS/MS method for the determination of PPTN in rat plasma. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, and stability have been assessed and were within the recommended guidelines. The validated method proved to be suitable in a pilot study of PPTN kinetic disposition in rat plasma after a single intraperitoneal dose, and represents an appropriate tool to further pharmacokinetic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epileptic seizures are harmful to the developing brain. During epileptic seizures, overactivation of glutamate receptors (GluR) leads to neuronal degeneration, defined as excitotoxicity. The hippocampus is especially vulnerable to excitotoxic neuronal death, but its mechanism has remained incompletely known in the developing brain. Recently, signs of activation of inflammatory processes after epileptic seizures have been detected in the hippocampus. The purpose of this thesis was to study the inflammatory reaction and death mechanisms in excitoxic neurodegeneration induced by the glutamate analogue kainic acid (KA) in the developing hippocampus. Organotypic hippocampal slice cultures (OHCs), prepared from 6-7-day-old rats (P6-7) and treated with KA, served as an in vitro model. KA-induced status epilepticus in P9 and P21 rats was used as an in vivo model. The results showed that the pyramidal cell layers of the hippocampus were the most susceptible to irreversible and age-specific neurodegeneration, which occurred in the juvenile (P21), but not in the immature (P9), rat hippocampus. The primary death mechanism was necrosis as there were no significant changes in the expression of selected apoptosis markers and morphological cellular features of necrosis were found. Inflammatory response was similarly age-dependent after KA treatment as a rapid, fulminant and wide response was detected in the juvenile, but not in the immature, rat brain. An anti-inflammatory drug treatment, given before KA, was not neuroprotective in OHCs, possibly because of the timing of the treatment. In summary, the results suggest that KA induces an age-dependent inflammatory response and necrotic neurodegeneration, which may cause disturbances in hippocampal connectivity and promote epileptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The connexin 32 (Cx32) is a protein that forms the channels that promote the gap junction intercellular communication (GJIC) in the liver, allowing the diffusion of small molecules through cytosol from cell-to-cell. Hepatic fibrosis is characterized by a disruption of normal tissue architeture by cellular lesions, and may alter the GJIC. This work aimed to study the expression and distribution of Cx32 in liver fibrosis induced by the oral administration of dimethylnitrosamine in female Wistar rats. The necropsy of the rats was carried out after five weeks of drug administration. They presented a hepatic fibrosis state. Sections from livers with fibrosis and from control livers were submitted to immunohistochemical, Real Time-PCR and Western-Blot analysis to Cx32. In fibrotic livers the Cxs were diffusely scattered in the cytoplasm, contrasting with the control livers, where the Cx32 formed junction plaques at the cell membrane. Also it was found a decrease in the gene expression of Cx32 without reduction in the protein quantity when compared with controls. These results suggest that there the mechanism of intercellular communication between hepatocytes was reduced by the fibrotic process, which may predispose to the occurrence of a neoplastic process, taken in account that connexins are considered tumor suppressing genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Maternal diabetes affects many fetal organ systems, including the vasculature and the lungs. The offspring of diabetic mothers have respiratory adaptation problems after birth. The mechanisms are multifactorial and the effects are prolonged during the postnatal period. An increasing incidence of diabetic pregnancies accentuates the importance of identifying the pathological mechanisms, which cause the metabolic and genetic changes that occur in offspring, born to diabetic mothers. Aims and methods: The aim of this thesis was to determine changes both in human umbilical cord exposed to maternal type 1 diabetes and in neonatal rat lungs after streptozotocin-induced maternal hyperglycemia, during pregnancy. Rat lungs were used as a model for the potential disease mechanisms. Gene expression alterations were determined in human umbilical cords at birth and in rat pup lungs at two week of age. During the first two postnatal weeks, rat lung development was studied morphologically and histologically. Further, the effect of postnatal hyperoxia on hyperglycemia-primed rat lungs was investigated at one week of age to mimic the clinical situation of supplemental oxygen treatment. Results: In the umbilical cord, maternal diabetes had a major negative effect on the expression of genes involved in blood vessel development. The genes regulating vascular tone were also affected. In neonatal rat lungs, intrauterine hyperglycemia had a prolonged effect on gene expression during late alveolarization. The most affected pathway was the upregulation of extracellular matrix proteins. Newborn rat lungs exposed to intrauterine hyperglycemia had thinner saccular walls without changes in airspace size, a smaller relative lung weight and lung total tissue area, and increased cellular apoptosis and proliferation compared to control lungs, possibly reflecting an aberrant maturational adaptation. At one and two weeks of age, cell proliferation and secondary crest formation were accelerated in hyperglycemia-exposed lungs. Postnatal hyperoxic exposure, alone caused arrested alveolarization with thin-walled and enlarged alveoli. In contrast, the dual exposure of intrauterine hyperglycemia and postnatal hyperoxia resulted in the phenotype of thick septa together with arrested alveolarization and decreased number of small pulmonary arteries. Conclusions: Maternal diabetic environment seems to alter the umbilical cord gene expression profile of the regulation of vascular development and function. Fetal hyperglycemia may additionally affect the genetic regulation of the postnatal lung development and may actually induce prolonged structural alterations in neonatal lungs together with a modifying effect on the deleterious pulmonary exposure of postnatal hyperoxia. This, combined with the novel human umbilical cord gene data could serve as stepping stones for future therapies to curb developmental aberrations.