940 resultados para Peierls glass
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present work, tellurite 20Li(2)O-80TeO(2) glasses were prepared with identical nominal composition under different glass-forming histories to produce a stressed and stress-free samples. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques were used to study the effects of the glass-forming histories on the thermal and structural properties of these glasses. The gamma-TeO2 (metastable), alpha-TeO2 and alpha-Li2Te2O5 phases were identified during the controlled devitrification in these glasses. The mestastable character of the gamma-TeO2 phase was clearly observed in the glass under stress but this effect is not so clear in the stress-free glass. The gamma-TeO2 and alpha-TeO2 phases crystallizes during the initial stages of crystallization in both studied glasses while the alpha-Li2Te2O5 phase crystallize in the final stages of the crystallization. The activation energies and Avrami exponent were calculated for both studied glasses with different particle size leading to E-3 > E-2 > E-1 for stressed glass and E-3 > E-2 approximate to E-1 for stress-free glass, where E-1, E-2 and E-3 were associated to the gamma-TeO2, alpha-TeO2 and alpha-Li2Te2O5 phases, respectively. The observed distinct (n) over bar (1) < <(n)over bar>(2) < <(n)over bar>(3) in both glasses is an indicative that nucleation and growth takes place by more than one mechanism in the early stages of the crystallization. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Glass ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. However, the results of genotoxicity studies using these materials are inconclusive in literature. The goal of this study was to examine the genotoxic and cytotoxic potential of three different glass ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to Chinese hamster ovary (CHO) cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis nonparametric test. The results showed that the powder from Ketac Molar displayed genotoxicity only in the maximum concentration evaluated (100 mu g/mL). In the same way, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant differences (P < 0.05) in cytotoxicity provoked by all powders tested of glass ionomer cements were observed for exposure at 1000 mu g/mL concentration. With respect to liquids of glass ionomer cements evaluated, the major toxic effect on cell viability was produced at 10%, beginning at the dilution of 0.5% for Vitrebond. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects.
Resumo:
Glass-ionomer cements are widely used in dentistry as restorative materials and adhesives for composite restorations. A number of genotoxicity studies have been conducted using these materials with results conflicting so far. Thus, the approach was aimed to look at the genotoxic and cytotoxic potential of three different glass-ionomer cements available commercially (Ketac Cem, Ketac Molar and Vitrebond) by the single cell gel (comet) assay and trypan blue exclusion test, respectively. For this, such materials were exposed to mouse lymphoma cells in vitro for 1 h at 37 degrees C. Data were assessed by Kruskall-Wallis non-parametric test. The results showed that all powders assayed did not show genotoxic effects. on the other hand, the liquid from Vitrebond at 0.1% dilution caused an increase of DNA injury. Significant statistically differences (P < 0.05) in cytotoxicity provoked by all powders tested were observed for exposure at 1000 mu g mL(-1) concentration and 100 mu g mL(-1) for Ketac Molar. With respect to liquids of glass-ionomer cements evaluated, the major toxic effect on cell viability was produced at 1%, beginning at the dilution of 0.5% for Vitrebond. Taken together, these results support the notion that some components of glass-ionomer cements show both genotoxic and cytotoxic effects in higher concentrations.
Resumo:
A cárie secundária representa problema de saúde pública e socioeconômico no mundo. A restauração de dentes acometidos por cárie pode criar condições favoráveis à proliferação microbiana na superfície do material restaurador ou na interface dente/restauração, criando ambiente propício para o estabelecimento de cárie secundária. O objetivo deste estudo foi avaliar a capacidade de retenção de placa bacteriana em cimentos de ionômero de vidro convencionais (Chelon-Fil e Vidrion R) e modificados por resina (Vitremer e Fuji II LC) e de resina composta híbrida (Z100), utilizada como controle. Nos testes de retenção de microrganismos, in situ, 12 voluntários utilizaram, por 7 dias, placa de Hawley contendo corpos-de-prova de todos os materiais. A seguir, os corpos-de-prova foram transferidos para tubos contendo 2,0 ml de Ringer-PRAS e os microrganismos presentes em sua superfície foram cultivados em placa com ágar-sangue e ágar Mitis Salivarius Bacitracina, os quais foram incubados, a 37ºC, em anaerobiose (90% N2, 10% CO2), por 10 e 2 dias, respectivamente. Os ionômeros modificados por resina retiveram quantidade de bactérias similar àquela mostrada pela resina testada. Os ionômeros modificados por resina também apresentaram menor número de estreptococos do grupo mutans do que a resina e os cimentos ionoméricos convencionais. Os ionômeros de vidro convencionais apresentaram menor número de estreptococos do grupo mutans que a resina, sendo que essa diferença não foi estatisticamente significativa.
Resumo:
The purpose of this study was to histologically analyze the influence of bioactive glass and/or acellular dermal matrix on bone healing in surgically created defects in the tibiae of 64 rats (Rattus norvegicus, albinus, Wistar). Materials and Methods: A 4-mm X 3-mm unicortical defect was created on the anterolateral surface of the tibia. Animals were divided into 4 groups: C, control; BG, the defect was filled with bioactive glass; ADM, the defect was covered with acellular dermal matrix; and BG/ADM, the defect was filled with bioactive glass and covered with acellular dermal matrix. Animals were sacrificed at 10 or 30 days postoperatively, and the specimens were removed for histologic processing. The formation of new bone in the cortical area of the defect was evaluated histomorphometrically. Results: At 10 and 30 days postoperatively, groups C (39.65% +/- 5.63% / 63.34% +/- 5.22%) and ADM (38.12% +/- 5.53 / 58.96% +/- 7.05%) presented a larger amount of bone formation compared to the other groups (P<.05). In the same periods, groups BG (13.10% +/- 6.29% / 29.5% +/- 5.56%) and BG/ADM (20.72% +/- 8.31% / 24.19% +/- 6.69%) exhibited statistically similar new bone formation. However, unlike the other groups, group BG/ADM did not present a significant increase in bone formation between the 2 time points. Conclusion: Based on these results, it can be concluded that all of the materials used in this study delayed bone healing in non-critical-size defects. INT J ORAL MAXILLOFAC IMPLANTS 2008;23:811-817
Resumo:
The restoration and recovery of the alveolar healing process are a challenge to dental surgeons to achieve satisfactory results at the osseointegration of implants and implant rehabilitation. Different operative technique and biomaterials are being used to reconstruct the framework of the alveolar process. One of the biomaterials used for this purpose is the bioactive glass. The aim of this study was to report clinical and histologic final results of 7 clinical reports of alveolar ridge augmentation using bioactive glass. Clinically, bioglass was able to maintain bone architecture of the alveolar bone and repaired satisfactory. Biopsy was performed on the histologic samples and showed bone formation in intimate contact to the particles of the biomaterial.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Statement of problem. Implant overdenture prostheses are prone to acrylic resin fracture because of space limitations around the implant overdenture components.Purpose. The purpose of this study was to evaluate the influence of E-glass fibers and acrylic resin thickness in resisting acrylic resin fracture around a simulated overdenture abutment.Material and methods. A model was developed to simulate the clinical situation of an implant overdenture abutment with varying acrylic resin thickness (1.5 or 3.0 mm) with or without E-glass fiber reinforcement. Forty-eight specimens with an underlying simulated abutment were divided into 4 groups (n=12): 1.5 mm acrylic resin without E-glass fibers identified as thin with no E-glass fiber mesh (TN-N); 1.5 mm acrylic resin with E-glass fibers identified as thin with E-glass fiber mesh (TN-F); 3.0 mm acrylic resin without E-glass fibers identified as thick without E-glass fiber mesh (TK-N); and 3.0 mm acrylic resin with E-glass fibers identified as thick with E-glass fiber mesh (TK-F). All specimens were submitted to a 3-point bending test and fracture loads (N) were analyzed with a 2-way ANOVA and Tukey's post hoc test (alpha=.05).Results. The results revealed significant differences in fracture load among the 4 groups, with significant effects from both thickness (P<.001) and inclusion of the mesh (P<.001). Results demonstrated no interaction between mesh and thickness (P=.690). The TN-N: 39 +/- 5 N; TN-F: 50 +/- 6.9 N; TK-N: 162 +/- 13 N; and TK-F: 193 +/- 21 N groups were all statistically different (P<.001).Conclusions. The fracture load of a processed, acrylic resin implant-supported overdenture can be significantly increased by the addition of E-glass fibers even when using thin acrylic resin sections. on a relative basis, the increase in fracture load was similar when adding E-glass fibers or increasing acrylic resin thickness. (J Prosthet Dent 2011;106:373-377)