967 resultados para Pathogenic Bacteria
Resumo:
Aquaculture has developed to become one of the fastest growing food producing sectors in the world.Today India is one among the major shrimp producing countries in the world.There are extensive and intensive shrimp culture practices. In extensive shrimp culture, shrimps are stocked at low densities (< 25 PLs m'2)in large ponds or tidal enclosures in which little or no management is exercised or possible. Farmers depend almost entirely on natural conditions in extensive cultures. Intensive shrimp culture is carried out in high densities (>200 PLs m'2). Much of the world shrimp production still comes from extensive culture.There is a growing demand for fish and marine products for human and animal consumption. This demand has led to rapid growth of aquaculture, which some times has been accompanied by ecological impacts and economic loss due to diseases. The expansion of shrimp culture always accompanies local environmental degradation and occurrence of diseases.Disease out breaks is recognised as a significant constraint to aquaculture production. Environmental factors, water quality, pollution due to effluent discharge and pathogenic invasion due to vertical and horizontal transmission are the main causes of shrimp disease out breaks. Nutritional imbalance, toxicant and other pollutants also account for the onset of diseases. pathogens include viruses, bacteria, fungi and parasites.Viruses are the most economically significant pathogens of the cultured shrimps world wide. Disease control in shrimp aquaculture should focus first on preventive measures for eliminating disease promoting factors.ln order to design prophylactic and proactive measures against shrimp diseases, it is mandatory to understand the immune make up of the cultivable species, its optimum culture conditions and the physico chemical parameters of the rearing environment. It has been proven beyond doubt that disease is an end result of complex interaction of environment, pathogen and the host animal. The aquatic environment is abounded with infectious microbes.The transmission of disease in this environment is extremely easy, especially under dense, culture conditions. Therefore, a better understanding of the immune responses of the cultured animal in relation to its environmental alterations and microbial invasions is essential indevising strategic measures against aquaculture loss due to diseases. This study accentuate the importance of proper and regular health monitoring in shrimps employing the most appropriate haematological biomarkers for application of suitable prophylactic measures in order to avoid serious health hazards in shrimp culture systems.
Resumo:
Vibrio are important during hatchery rearing. aquaculture phase and post-harvest quality of shrimps. Vibrio spp are of concern to shrimp farmers and hatchery operators because certain species can cause Vibriosis. Vibrio species are of concern to humans because certain species cause serious diseases.With the progress in aquaculture, intensive systems used for shrimp aquaculture create an artificial environment that increases bacterial growth. To maintain the productivity of such an intensive aquaculture, high inputs of fish protein have to be employed for feeding together with high levels of water exchange and the massive use of antibiotics/ probiotics / chemicals. It seems that the combination of these conditions favours the proliferation of vibrios and enhances their virulence and disease prevalence. The risk of a microbial infection is high, mainly at larval stages. The effect and severity are related to Vibrio species and dose, water, feed, shrimp quality and aquaculture management.Consumption of seafood can occasionally result in food-bome illnesses due to the proliferation of indigenous pathogens like Vibrio.Of the l2 pathogenic Vibrio species, 8 species are known to be directly food associated. Strict quality guidelines have been laid by the importing nations, for the food products that enter their markets. The microbiological quality requirement for export of frozen shrimp products is that V.cholerae, V.parahaemolyticus and V. vulnificus should be absent in 25g of the processed shrimp (Export Inspection Council of India, 1995). The mere presence of these pathogenic Vibrios is sufficient for the rejection of the exported product.The export rejections cause serious economic loss to the shrimp industry and might harm the brand image of the shrimp products from the countiy.There is a need for an independent study on the incidence of different pathogenic vibrios in shrimp aquaculture and investigate their biochemical characteristics to have a better understanding about the growth and survival of these organisms in the shrimp aquaculture niche. PCR based methods (conventional PCR, duplex PCR, multiplex-PCR and Real Time PCR) for the detection of the pathogenic Vibrios is important for rapid post-harvest quality assessment. Studies on the genetic heterogeneity among the specific pathogenic vibrio species isolated from shrimp aquaculture system provide; valuable information on the extent of genetic diversity of the pathogenic vibrios, the shrimp aquaculture system.So the present study was undertaken to study the incidence of pathogenic Vibrio spp. in Penaeus monodon shrimp hatcheries and aquaculture farms, to carry out biochemical investigations of the pathogenic Vibrio spp isolated from P. monodon hatchery and. aquaculture environments, to assess the effect of salt (NaCl) on the growth and enzymatic activities of pathogenic Vibrio spp., to study the effect of preservatives, and chemicals on the growth of pathogenic Vibrio spp. and to employ polymerase chain reaction (PCR) methods for the detection of pathogenic V ibrio spp.Samples of water (n=7) and post-larvae (n=7) were obtained from seven Penaeus monodon hatcheries and samples of water (n=5), sediment (n=5) and shrimp (n=5) were obtained from five P. monodon aquaculture farms located on the East Coast of lndia. The microbiological examination of water, sediment, post-larvae and shrimp samples was carried out employing standard methods and by using standard media.The higher bacterial loads were obtained in pond sediments which can be attributed to the accumulation of organic matter at the pond bottom which stimulated bacterial growth.Shrimp head. (4.78 x 105 +/- 3.0 x 104 cfu/g) had relatively higher bacterial load when compared to shrimp muscle 2.7 x 105 +/- 1.95 x 104 cfu/g). ln shrimp hatchery samples, the post-larvae (2.2 x 106 +/- 1.9 x 106 cfu/g) had higher bacterial load than water (5.6 x 103 +/- 3890 cfu/ml).The mean E.coli counts were higher in aquaculture pond sediment (204+/-13 cfu/g) and pond water (124+/-88 cfu/ml). Relatively lower Escherichia coli counts were obtained from shrimp samples (12+/-11 to 16+/-16.7 cfu/g). The presence of E.coli in aquaculture environment might have been from the source water. E.coli was not detected in hatchery waters and post-larvae.
Resumo:
This thesis Entitled Haematological responses of penaeus monodon to environmental alterations and pathogenic invasion. Thesis concluded from the present study that stress is accompanied by alterations in haemolymph metabolic variables and immune responses that influences the susceptibility of P. monodon to infection. Acute salinity variations were proved to be a stress condition that enhances the susceptibility of P. monodon to V. harveyi and WSSV infection. Ambient Cu at 0.1 mg 1" and ambient Zn at 1.0 mg 1" proved immunostimulatory in increasing the immunocompetence of P. monodon to WSSV infection and higher concentrations of Cu and Zn proved immunosuppressive. Haemolymph total protein, total carbohydrates and total lipids showed the highest relation with immune responses. THC, PO, ACP and ALP that greatly correlated with the survival rate proposed as reliable biomarkers of health in P. monodon. The study highlights the need for proper management practices and regular health monitoring to be adopted to avoid mass mortality in shrimp culture ponds.
Resumo:
The thesis mainly discussed the isolation and identification of a probiotic Lactobacillus plantarum, fermentative production of exopolysaccharide by the strain, its purification, structural characterisation and possible applications in food industry and therapeutics. The studies on the probiotic characterization explored the tolerance of the isolated LAB cultures to acid, bile, phenol, salt and mucin binding. These are some of the key factors that could satisfy the criteria for probiotic strains . The important factors required for a high EPS production in submerged fermentation was investigated with a collection of statistical and mathematical approach. Chapter 5 of the thesis explains the structural elucidation of EPS employing spectroscopic and chromatographic techniques. The studies helped in the exploration of the hetero-polysaccharide sequence from L. plantarum MTCC 9510. The thesis also explored the bioactivities of EPS from L. plantarum. As majority of chemical compounds identified as anti-cancerous are toxic to normal cells, the discovery and identification of new safe drugs has become an important goal of research in the biomedical sciences. The thesis has explored the anti-oxidant, anti-tumour and immunomodulating properties of EPS purified from Lactobacillus plantarum. The presence of (1, 3) linkages and its molecular weight presented the EPS with anti-oxidant, anti-tumour and immunomodulating properties under in vitro conditions.
Resumo:
This thesis entitled Development of nitrifying ans photosynthetic sulfur bacteria based bioaugmentation systems for the bioremediation of ammonia and hydregen sulphide in shrimp culture. the thesis is to propose a sustainable, low cost option for the mitigation of toxic ammonia and hydrogen sulphide in shrimp culture systems. Use of ‘bioaugmentors’ as pond additives is an emerging field in aquaculture. Understanding the role of organisms involved in the ‘bioaugmentor’ will obviously help to optimize conditions for their activity.The thesis describes the use of wood powder immobilization of nitrifying consortia.Shrimp grow out systems are specialized and highly dynamic aquaculture production units which when operated under zero exchange mode require bioremediation of ammonia, nitrite nitrogen and hydrogen sulphide to protect the crop. The research conducted here is to develop an economically viable and user friendly technology for addressing the above problem. The nitrifying bacterial consortia (NBC) generated earlier (Achuthan et al., 2006) were used for developing the technology.Clear demonstration of better quality of immobilized nitrifiers generated in this study for field application.
Resumo:
Cell immnhilizatinn technology in a rapidly expanding arna in the endeavour of microbial fnrmentatiwn.During the lnmt 15 years anveral prnceafinn have been developed and more are in developmental atage of approaching commercial utilizatinn.In the present programme it was planned to develop an optimized process for the innobilization of alpha amylase producing Bacillus polymyxa (CBTB 25) an isolate obtained from Cochin University campus primarily for the production of alpha-amylase.Optimal concentration of support material that attributaa stability and maximal activity to the immobilized cell beads was determined using different concentrations of sodium aliginate as support and estimation of amylase production.An overeall assessment of the data obtained for the various studies conducted denotes that immobilized cells synthesize alpha-amylase at comparable rates with free cells and produce reducing sugara at a higher level than free cells.Results indicated that both phosphate and citrate buffers could be used for disrupting the immobilized beads since they enforced maximal release of cells through leaching from the beads within one hour.On comparative analysis it was observed that immobilized cells could synthesize alpha amylase at similar levels with free cells of B.polymyxa.On Co-immobilization of B.Polymyxa with S.cerevisiae,the co-immobilizate beads could effeciently convert starch directly to ethanol with a yield of 14.8% at 1 : 2 ratio.
Resumo:
L-glutaminases (L—glutamine amidohydrolase EC.3.5.l.2) is proposed as a prospective candidate for enzyme therapy cnf cancer and also as zui important additive during enzymatic digestion of shoyu koji since it could enhance glutamate content of soysauce. Commercial production of glutaminase could make possible its wide application in these areas, which would demand availability of potential sources and suitable fermentation techniques. The ‘present investigation highlighted marine environment as a potential source of efficient glutaminase producing bacteria mainly species of pseudomonas, aeromonas ,vibrio,alcaligenes, acinetobacter bacillus and planococci.Among them pseudomonas fluorescens ACMR 267 and v.cholerae ACMR 347 were chosen as the ideal strains for glutaminase production.Extracellular glutaminase fraction from all strains were in higher titres than intracellular enzymes during growth in mineral media, nutrient broth and nutrient broth added with glutamine.Glutaminase from all strains were purified employing (NH4)2SO4 fractionation followed tnr dialysis and ion exchange chromatography. The purified glutaminase from all strains were observed to be active and stable over a wide range of gfii and temperature.Optimization studies cflf environmental variables that normally influence time yiehi of glutaminase indicated that the optimal requirements of these bacteria for maximal glutaminase production remained stable irrespective of the medium, they are provided with for enzyme production. However, solid state fermentation technique was observed to be the most suitable process for the production of Glutaminase.
Resumo:
This thesis Entitled Studies on amylolytic bacteria in cochin backwaters.This thesis presents a detailed account of the disribution of amylolytic bacteria in water. sediment. fishes ( Etroplus suratensis and Liza parsia) • prawns ( Penaeus indicus and Metapenaeus dobsoni) and clams ( Sunetta scripta and Meretrix casta) from Cochin backwaters. genera-wise distribution of amylolytic bacteria, ability of selected strains to grow and produce amylase at various physico-chemical conditions. Regulation of amylase synthesis anrt characters of amylases producer by these halophilic bacteria.Amylolytic bacteria are distributed widely in water. sediment. fishes. prawns and clams of Cochin back waters. 53% of the total isolates tested were capable of producing amylase. Maximum number of arnylolytic bacteria were present in Metapenaeus dobsoni. In general, the gut region of aquatic animals harboured more amylolytic bacteria than the gill or surface. These bacteria may help in the digestion of starch present in their food.Presence of ions in the medium was found to be essential for growth and amylase production. It was found that this ionic requirement is not highly specific. Sorlium chloride could be replaced by potassium chloride. or magnesium chloride to some extent I without affecting growth and amylase production. The important function of these ions may be to maintain the osmotic balance between the cells and their environment.All the isolates showed the ability to grow and produce amylase using raw-starches from cassava. plantain and potato .This property suggests their role in the rdegradation of native starches in the environment
Resumo:
Ocean persists as a rich and renewable source of cheap protein for the whole world. Among the prawns/shrimps landed from the Indian Ocean and her backwaters, more than 90% are exported to affluent countries. The Indian white prawn Penaeus indicus, constitutes the major portion of the frozen shrimps exported from India every year. The present study is aimed at gathering information on the total heterotrophic bacteria (THB) associated with B. indicus, with special reference to eggs, nauplii, zoeae, mysis, and post larvae in hatchery, and juveniles and adults in culture pond. Simultaneously, IHB associated with E. indicus in its natural habitat also is studied for comparison. It is envisaged that this information will be highly useful for modifying the existing hatchery and pond management-practices.
Resumo:
The thesis is proposed to study the occurrence and distribution of chitinoclasts in water, sediment and fauna as related to site characteristics such as temperature, salinity, depth of water, pH, etc. Since no information is available on the chitinolytic properties of coastal strains, it is also proposed to study the chitinolytic activity of the bacterial isolates in relation to various environmental conditions. It is also planned to work out the taxonomy of some of the representative isolates and certain kinetic properties of their chitinases. It is expected that the results of the study would yield a comprehensive information-on the chitinoclastic bacteria in the southern coastal zone of west coast of India.
Resumo:
Microorganisms distributed in the marine and brackish environments play an important role in the decomposition of organic matter and mineralisation in the system (Seshadri and lgnacimuthu, 2002). Estuary is one of the most productive ecosystems, at the same time one among the least explored ecosystems on earth, which has immense potential as a source of potent microorganisms that produce valuable compounds particularly, enzymes such as proteases. In this scenario, it is very appropriate to embark on finding novel alkaline protease producers from the estuarine system. The area where the present investigation was carried out is a part of the extensive estuarine system of South India viz. Cochin Estuary. There is meagre knowledge regarding the microbial composition, particularly the protease producers of Cochin Estuary. Hence, the present study has been undertaken with the objective of finding novel alkaline protease producing bacteria from Cochin Estuary
Resumo:
The thesis entitled "Studies on the eco-physiology of heterotrophic and indicator bacteria in the marine environments of Kerala" embodies the results of an investigation carried out by the candidate at the Central Marine Fisheries Research Institute, Cochin. It is presentedd under 4 chapters in two parts (Parts A & B) and includes 6 sections. The material for the study was collected in the Cochin backwater during April 1972 to February. 1973, March 1974 to February 1975, July 1975 to June 1976 and in the ishore area during January to October, 1978 and an account of the heterotropic and indicator bacteria are given with intensity charts and tables. Samples from all the stations contained significant quantities of heterotrophs (Part A, Section I) and faecal pollution indicators (Section II). Maximum number of heterotrophic bacteria was observed during the postmonsoon period. The total counts betwen one station and the other did not vary as much as the counts between months did. The distribution was characterised by overdispersion. During 1972-73 in all the stations except the fourth the minimum heterotrophs (Total counts) were recorded during the monsoon period. Minimum counts were observed during the premonsoon period, with an increasing trend from the premonsoon to postmonsoon seasons. Maximum counts were recorded during monsoon months during 1974-75. No significant difference was noted in the total plate count between stations, months and regions. Seasonal variations in sea water was meagre during 1975-76, whereas in sediments variations were prominent during monsoon in Station I - near the mouth of the sewage effluent of Cochin City and in postmonsoon at Station II in the Mattancherry Channel and Station III near barmouth
Resumo:
The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth
Resumo:
Emergence of antibiotic resistance among aquaculture pathogens has made it necessary to look into environment friendly, effective and sustainable methods such as probiotic and immunostimulants among others.. In the present study, LAB were isolated from the gut of fish species namely Rastrelliger kanagurta and analyzed for their antibacterial activity against various fish, shrimp and human pathogens. Different LAB species such as Lactobacillus plantarum, L. bulgaricus, L. brevis and L. viridiscens were encountered in the gut of R. kanagurta. Several strains showed good activity against fish, shrimp and human pathogens. LAB from the gut of such marine species may be developed as possible probiont for environment friendly health management of fresh water, estuarine and marine species currently exploited in aquaculture
Resumo:
In the present study we address the issue on gut associated lactic acid bacteria (LAB) isolated from the intestine of estuarine fish Mugil cephalus using de Man Rogossa and Sharpe (MRS) agar. LAB isolates were identified biochemically and screened for their ability to inhibit in vitro growth of various fish, shrimp and human pathogens. Most of the LAB isolates displayed an improved antagonism against fish pathogens compared to shrimp and human pathogens. Selected representative strains displaying high antibacterial activity were identified using 16S rRNA gene sequence analysis. Of the selected strains Lactobacillus brevis was the most predominant. Four other species of Lactobacillus, Enterobacter hormaechei and Enterobacter ludwigii were also identified. It was also observed that even among same species, considerable diversity with respect to substrate utilization persisted. Considering the euryhaline nature of grey mullet (Mugil cephalus), the LAB isolated from the gut possessed good tolerance to varying salt concentrations. This finding merits further investigation to evaluate whether the isolated LAB could be used as probiotics in various fresh and sea water aquaculture