928 resultados para Parameter
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.
Resumo:
This correspondence paper addresses the problem of output feedback stabilization of control systems in networked environments with quality-of-service (QoS) constraints. The problem is investigated in discrete-time state space using Lyapunov’s stability theory and the linear inequality matrix technique. A new discrete-time modeling approach is developed to describe a networked control system (NCS) with parameter uncertainties and nonideal network QoS. It integrates a network-induced delay, packet dropout, and other network behaviors into a unified framework. With this modeling, an improved stability condition, which is dependent on the lower and upper bounds of the equivalent network-induced delay, is established for the NCS with norm-bounded parameter uncertainties. It is further extended for the output feedback stabilization of the NCS with nonideal QoS. Numerical examples are given to demonstrate the main results of the theoretical development.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the subsaturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.
Resumo:
The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
On the microscale, migration, proliferation and death are crucial in the development, homeostasis and repair of an organism; on the macroscale, such effects are important in the sustainability of a population in its environment. Dependent on the relative rates of migration, proliferation and death, spatial heterogeneity may arise within an initially uniform field; this leads to the formation of spatial correlations and can have a negative impact upon population growth. Usually, such effects are neglected in modeling studies and simple phenomenological descriptions, such as the logistic model, are used to model population growth. In this work we outline some methods for analyzing exclusion processes which include agent proliferation, death and motility in two and three spatial dimensions with spatially homogeneous initial conditions. The mean-field description for these types of processes is of logistic form; we show that, under certain parameter conditions, such systems may display large deviations from the mean field, and suggest computationally tractable methods to correct the logistic-type description.
Resumo:
Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry
Resumo:
Purpose: To date, there have been no measuring techniques available that could clearly identify all phases of tear film surface kinetics in one interblink interval. ----- ----- Methods: Using a series of cases, we show that lateral shearing interferometry equipped with a set of robust parameter estimation techniques is able to characterize up to five different phases of tear film surface kinetics that include: (i) initial fast tear film build-up phase, (ii) further slower tear film build-up phase, (iii) tear film stability, (iv) tear film thinning, and (v), after a detected break-up, subsequent tear film deterioration. ----- ----- Results: Several representative examples are given for estimating tear film surface kinetics in measurements in which the subjects were asked to blink and keep their eyes open as long as they could. ----- ----- Conclusions: Lateral shearing interferometry is a noninvasive technique that provides means for temporal characterization of tear film surface kinetics and the opportunity for the analysis of the two-step tear film build-up process.
Resumo:
An experimental set-up was used to visually observe the characteristics of bubbles as they moved up a column holding xanthan gum crystal suspensions. The bubble rise characteristics in xanthan gum solutions with crystal suspension are presented in this paper. The suspensions were made by using different concentrations of xanthan gum solutions with 0.23 mm mean diameter polystyrene crystal particles. The influence of the dimensionless quantities; namely the Reynolds number, Re, the Weber number, We, and the drag co-efficient, cd, are identified for the determination of the bubble rise velocity. The effect of these dimensionless groups together with the Eötvös number, Eo, the Froude number, Fr, and the bubble deformation parameter, D, on the bubble rise velocity and bubble trajectory are analysed. The experimental results show that the average bubble velocity increases with the increase in bubble volume for xanthan gum crystal suspensions. At high We, Eo and Re, bubbles are spherical-capped and their velocities are found to be very high. At low We and Eo, the surface tension force is significant compared to the inertia force. The viscous forces were shown to have no substantial effect on the bubble rise velocity for 45 < Re < 299. The results show that the drag co-efficient decreases with the increase in bubble velocity and Re. The trajectory analysis showed that small bubbles followed a zigzag motion while larger bubbles followed a spiral motion. The smaller bubbles experienced less horizontal motion in crystal suspended xanthan gum solutions while larger bubbles exhibited a greater degree of spiral motion than those seen in the previous studies on the bubble rise in xanthan gum solutions without crystal.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
Axial deformations resulting from in-plane loads (axial forces) of plate elements impact significantly on their vibration characteristics. Although, numerous methods have been developed to quantify axial forces and hence deformations of individual plate elements with different boundary conditions based on their natural frequencies, these methods are unable to apply to the plate elements in a structural system. This is because the natural frequency is a global parameter for the entire structure. Thus, this paper proposes a comprehensive vibration based procedure to quantify axial deformations of plate elements in a structural framing system. Unique capabilities of the proposed method present through illustrative examples. Keywords- Plate Elements, Dynamic Stiffness Matrix, Finite Element Method, Vibration Characteristics, Axial Deformation
A Modified inverse integer Cholesky decorrelation method and the performance on ambiguity resolution
Resumo:
One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.
Resumo:
The variability of input parameters is the most important source of overall model uncertainty. Therefore, an in-depth understanding of the variability is essential for uncertainty analysis of stormwater quality model outputs. This paper presents the outcomes of a research study which investigated the variability of pollutants build-up characteristics on road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary highly even within the same land use. Additionally, industrial land use showed relatively higher variability of maximum build-up, build-up rate and particle size distribution, whilst the commercial land use displayed a relatively higher variability of pollutant-solid ratio. Among the various build-up parameters analysed, D50 (volume-median-diameter) displayed the relatively highest variability for all three land uses.
Resumo:
Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.