946 resultados para PYROLYTIC-GRAPHITE ELECTRODE
Resumo:
In the present paper, a 60 h life-time test of a direct ethanol fuel cell (DEFC) at a current density of 20 mA cm(-2) (the beginning 38 h) and 40 mA cm(-2) (the last 22 h) was carried out. After the life-time test, the MEA could not achieve the former performance. X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX) were employed to characterize the anode and cathode catalyst before and after the life-time test. The XRD and TEM results showed that the particle size of the anode catalyst increased from 2.3 to 3.3 nm and the cathode from 3.0 to 4.6 nm. The EDX results of PtSn/C anode catalysts before and after the life-time test indicated that the content of the oxygen and tin, especially the content of the platinum, decreased prominently after the life-time test. The results suggest that the agglomeration of electrocatalysts, the destruction of the anode catalyst together with the fuel/water crossover from anode to cathode concurrently contribute to the performance degradation of the DEFC. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.
Resumo:
The research work in this thesis included the sensitive and selective separation of biological substance by capillary electrophoresis with a boron doped diamond electrode for amperometric detection. Chapter 1 introduced the capillary electrophoresis and electrochemical detection. It included the different modes of capillary electrophoresis, polyelectrolyte multilayers coating for open tubular capillary electrochromatography, different modes of electrochemical detection and carbon based electrodes. Chapter 2 showed the synthesized and electropolymerized N-acetyltyramine with a negatively charged sulfobutylether-β-cyclodextrin on a boron doped diamond (BDD) electrode followed by the electropolymerzation of pyrrole to form a stable and permselective film for selective dopamine detection. For comparison, a glassy carbon (GC) electrode with a combined electropolymerized permselective film of polytyramine and polypyrrole-1-propionic acid was used for selective detection of dopamine. The detection limit of dopamine was improved from 100 nM at a GC electrode to 5 nM at a BDD electrode. Chapter 3 showed field-amplified sample stacking using a fused silica capillary coated with gold nanoparticles embedded in poly(diallyldimethylammonium) chloride, which has been investigated for the electrophoretic separation of indoxyl sulphate, homovanillic acid and vanillylmandelic acid. The detection limit of the three analytes obtained by using a boron doped diamond electrode was around 75 nM, which was significantly below their normal physiological levels in biological fluids. This combined separation and detection scheme was applied to the direct analysis of these analytes and other interfereing chemicals including uric and ascorbic acids in urine samples without off-line sample treatment or preconcentration. Chapter 4 showed the selective detection of Pseudomonas Quinolone Signal, PQS for quorum sensing from its precursor HHQ, using a simply boron doped diamond electrode. Furthermore, by combining poly(diallyldimethylammonium) chloride modified fused silica capillary with a BDD electrode for amperometric detection, PQS was separated from HHQ and other analogues. The detection limit of PQS was as low as 65 nM. Different P. aeruginosa mutant strains were studied. Chapter 5 showed the separation of aminothiols by layer-by-layer coating of silica capillary with a boron doped diamond electrode. The capillary was layer-by-layer coated with the polycation poly(diallyldimethylammonium) chloride and negatively charged silica nanoparticles. All the aminothiols was separated and detected using a BDD electrode in an acidic electrolyte. It was a novel scheme for the separation and detection of glutathione reduced and oxidized forms, which is important for estimated overstressed level in the human system.
Resumo:
In this thesis a novel theory of electrocatalysis at metal (especially noble metal)/solution interfaces was developed based on the assumption of metal adatom/incipient hydrous oxide cyclic redox transitions. Adatoms are considered as metastable, low coverage species that oxidise in-situ at potentials of often significantly cathodic to the regular metal/metal oxide transition. Because the adatom coverage is so low the electrochemical or spectroscopic response for oxidation is frequently overlooked; however, the product of such oxidation, referred to here as incipient hydrous oxide seems to be the important mediator in a wide variety of electrocatalytically demanding oxidation processes. Conversely, electrocatalytically demanding reductions apparently occur only at adatom sites at the metal/solution interface - such reactions generally occur only at potentials below, i.e. more cathodic than, the adatom/hydrous oxide transition. It was established that while silver in base oxidises in a regular manner (forming initially OHads species) at potentials above 1.0 V (RHE), there is a minor redox transition at much lower potentials, ca. o.35 v (RHE). The latter process is assumed to an adatom/hydrous oxide transition and the low coverage Ag(l) hydrous oxide (or hydroxide) species was shown to trigger or mediate the oxidation of aldehydes, e. g. HCHO. The results of a study of this system were shown to be in good agreement with a kinetic model based on the above assumptions; the similarity between this type of behaviour and enzyme-catalysed processes - both systems involve interfacial active sites - was pointed out. Similar behaviour was established for gold where both Au(l) and Au(lll) hydrous oxide mediators were shown to be the effective oxidants for different organic species. One of the most active electrocatalytic materials known at the present time is platinum. While the classical view of this high activity is based on the concept of activated chemisorption (and the important role of the latter is not discounted here) a vital role is attributed to the adatom/hydrous oxide transition. It was suggested that the well known intermediate (or anomalous) peak in the hydrogen region of the cyclic voltanmogram for platinum region is in fact due to an adatom/hydrous oxide transition. Using potential stepping procedures to minimise the effect of deactivating (COads) species, it was shown that the onset (anodic sweep) and termination (cathodic sweep) potential for the oxidation of a wide variety of organics coincided with the potential for the intermediate peak. The converse was also shown to apply; sluggish reduction reactions, that involve interaction with metal adatoms, occur at significant rates only in the region below the hydrous oxide/adatom transition.
Resumo:
In developing a biosensor, the utmost important aspects that need to be emphasized are the specificity and selectivity of the transducer. These two vital prerequisites are of paramount in ensuring a robust and reliable biosensor. Improvements in electrochemical sensors can be achieved by using microelectrodes and to modify the electrode surface (using chemical or biological recognition layers to improve the sensitivity and selectivity). The fabrication and characterisations of silicon-based and glass-based gold microelectrode arrays with various geometries (band and disc) and dimension (ranging from 10 μm-100 nm) were reported. It was found that silicon-based transducers of 10 μm gold microelectrode array exhibited the most stable and reproducible electrochemical measurements hence this dimension was selected for further study. Chemical electrodeposition on both 10 μm microband and microdisc were found viable by electro-assisted self-assembled sol-gel silica film and nanoporous-gold electrodeposition respectively. The fabrication and characterisations of on-chip electrochemical cell was also reported with a fixed diameter/width dimension and interspacing variation. With this regard, the 10 μm microelectrode array with interspacing distance of 100 μm exhibited the best electrochemical response. Surface functionalisations on single chip of planar gold macroelectrodes were also studied for the immobilisation of histidine-tagged protein and antibody. Imaging techniques such as atomic force microscopy, fluorescent microscopy or scanning electron microscope were employed to complement the electrochemical characterisations. The long-chain thiol of self-assembled monolayer with NTA-metal ligand coordination was selected for the histidine-tagged protein while silanisation technique was selected for the antibody immobilisation. The final part of the thesis described the development of a T-2 labelless immunosensor using impedimetric approach. Good antibody calibration curve was obtained for both 10 μm microband and 10 μm microdisc array. For the establishment of the T-2/HT-2 toxin calibration curve, it was found that larger microdisc array dimension was required to produce better calibration curve. The calibration curves established in buffer solution show that the microelectrode arrays were sensitive and able to detect levels of T-2/HT-2 toxin as low as 25 ppb (25 μg kg-1) with a limit of quantitation of 4.89 ppb for a 10 μm microband array and 1.53 ppb for the 40 μm microdisc array.
Resumo:
The description of the monolayer formed at Au(1 1 1) by 2-mercaptobenzimidazole (MBI) under potential control has been based on electrochemical data (charge measurements) and spectroscopic information from the subtractively normalized interfacial Fourier transform infrared spectroscopy method (SNIFTIRS). From the quantitative analysis of the SNIFTIR spectra, a surface coverage Γ/Γmax was extracted for each sample potential. The evolution of the coverage with potential was in full agreement with the charge density curve. The shift of the pzc in the presence of MBI indicates that the adsorbed molecules have a nonzero component of the permanent dipole moment in the direction perpendicular to the electrode surface. Thanks to the high quality of the spectra, it was possible to determine the orientation of MBI molecules at the surface in the monolayer and submonolayer range. The angle between the C2-axis of the molecule and the direction normal to the surface is close to 64 ± 4° and its small change (<15°) with potential indicates that the orientation of the molecules is chiefly controlled by the chemical interaction between the sulphur atom and the gold surface. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
While cochlear implants (CIs) usually provide high levels of speech recognition in quiet, speech recognition in noise remains challenging. To overcome these difficulties, it is important to understand how implanted listeners separate a target signal from interferers. Stream segregation has been studied extensively in both normal and electric hearing, as a function of place of stimulation. However, the effects of pulse rate, independent of place, on the perceptual grouping of sequential sounds in electric hearing have not yet been investigated. A rhythm detection task was used to measure stream segregation. The results of this study suggest that while CI listeners can segregate streams based on differences in pulse rate alone, the amount of stream segregation observed decreases as the base pulse rate increases. Further investigation of the perceptual dimensions encoded by the pulse rate and the effect of sequential presentation of different stimulation rates on perception could be beneficial for the future development of speech processing strategies for CIs.
Resumo:
We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap design is compatible with microfabrication and offers a simple method by which the height of the trapped ions above the surface may be changed in situ. We demonstrate trapping of single Sr88+ ions over an ion height range of 200-1000 μm for several hours under Doppler laser cooling and use these to characterize the trap, finding good agreement with our model. © 2010 The American Physical Society.
Resumo:
We have performed for the first time a molecular dynamics simulation of the adsorption of gas-phase Ag particles on a graphite substrate to provide an insight into the results of a comprehensive STM-based experiment on this system. Both pair-wise and many-body interatomic potentials have been employed, and a Morse-type Ag–C potential was specifically constructed to describe the interactions at the interface. Our simulation has successfully reproduced a significant portion of the experimental findings. We have also observed the intercalation of silver in graphite.
Resumo:
The adsorption of a C60 monolayer on a graphite substrate was modelled via molecular dynamics simulation covering a significant period of 160 picoseconds. The final configuration of C60s agrees closely with that observed in a scanning tunnelling microscopy (STM) experiment. Clusters of adsorbed molecules were then selected and their STM-like images were computed via the Keldysh Green function method.
Resumo:
A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation relates to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specifically formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. PACS numbers: 02.60.Cb, 07.05.Tp, 68.55.-a, 81.05.Tp
Resumo:
We have investigated the early stages in the adsorption process of C60 molecules on a highly oriented pyrolitic graphite (HOPG) substrate. C60 powder was thermally evaporated in UHV of 10−8 Pa conditions onto a freshly cleaved HOPG surface. We did not observe individual fullerenes on the substrate for the case of short deposition times and low evaporation rates. However, small islands of C60 molecules with an fcc structure could be observed when the deposition rate was about 0.2 nm/min and the total thickness was above 1 nm. The islands did not grow in the vicinity of the HOPG steps. The typical lateral dimensions of these islands were of the order of a few hundred square nanometers, having thickness of up to five monolayers. We modified the shapes and positions of these islands by the STM tip, using a small (less than 1 V) bias voltage.