900 resultados para PURM. Glass powder. Composites. Thermal insulation. Environment
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The urban residues put in landfill of the city of Sa˜o Carlos-SP, Brazil, in 2004 represent 58.7 % of decomposed organic material. The aim of this research was to characterize samples of urban solid waste and its organic extracts targeting the use of this residue without damaging the environment. The curves were obtained in a nitrogen atmosphere, a heating rate of 20 C min-1 , the temperature of 30–600 C. In the original sample after humidity loss, an event occured concerning the water constitution in the TG curve with an endothermic peak in the DTA curve. There was a presence of inorganic residue in the ashes. The organic matter present in the USR sample disposed in the landfill is constituted by several polarity, organics compounds from the degradation of lignin, cellulose, lipids, and other materials which thermal stabilities are distinct. The hexane extract features in its constitution two fatty acids, stearic and triacontano´ic, which are nonpolar compounds originating from bacteria present in the residue. The acids groups in extract hexane also were evidenced by X-ray diffraction and FTIR.
Resumo:
New Yb3+, Er3+ and Tm3+ doped fluoro-phosphate glasses belonging to the system NaPO3–YF3–BaF2–CaF2 and containing up to 10 wt% of rare-earth ion fluorides were prepared and characterized by differential scanning calorimetry, absorption spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and homogeneous glass-ceramics have been reproducibly obtained with a view to manage the red, green and blue emission bands and generate white light. X-ray diffraction as well as electron microscopy techniques have confirmed the formation of fluorite-type cubic nanocrystals at the beginning of the crystallization process while complex nanocrystalline phases are formed after a longer heat-treatment. The prepared glass-ceramics exhibit high optical transparency even after 170 h of thermal treatment. An improvement of up-conversion emission intensity – from 10 to 160 times larger – was measured in the glass-ceramics when compared to the parent glass, suggesting an important incorporation of the rare-earth ions into the crystalline phase(s). The involved mechanisms and lifetime were described in detail as a function of heat-treatment time. Finally, a large range of designable color rendering (from orange to turquoise through white) can be observed in these materials by controlling the laser excitation power and the crystallization rate.
Resumo:
The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb 2 O 3 –Sb 2 S 3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458nm solid state laser. It is shown, for the first time, the use of holographic technique to measure “in situ”, simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed “in situ” using a laser coupled to a micro-Raman equipment. Results showed that Sb 2 S 3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb 2 O 3 phase. Photo and thermal induced effects on films were studied using UV–Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).
Resumo:
A Photocatalyst ceramic powder that presented high photoactivity based on TiO2 modified with 25% molar of SnO2 and up to 5% molar of Ag2O was obtained in the present work. The aforementioned ceramic powder was obtained using all commercial oxides as well as the oxides mixture technique. The powders were ground in high energy mill for one hour with subsequent thermal treatment at 400°C for four hours. They were, furthermore, characterized using surface area of around 6m2/g, where the X-Ray diffraction results provided evidence for the presence of anatase and rutile phases, known to be typical characteristics of both the TiO2 and SnO2 used. During the thermal treatment, Ag2O was reduced to metallic silver. The photodegradation rehearsals were carried out using a 0.01 mmol/L Rhodamine B solution in a 100mg/L photocatalyst suspension in a 500ml beaker, which was irradiated with 4W germicide Ultraviolet light of 254nm. In addition, samples were removed after duration of about 10 minutes to an hour, where they were analyzed thoroughly in UV-vis spectrophotometer. The analysis of the results indicated that for the compositions up to 2.5% molar of Ag2O, the photoactivity was found to be greater than that of Degussa P25 photocatalyst powder, and as such it was then used as a reference. Taking into account 90% degradation of Rhodamine B, a duration period of 11 minutes was obtained for the developed photocatalyst powder compared to the 38 minutes observed for the Degussa P25. FEG-SEM micrographies enabled the verification of the morphology as well as the interaction of the oxide particles with the metallic silver, which led us to propose a model for the increase in photoactivity observed in the photocatalyst powder under investigation.
Resumo:
The aim of the present study was to evaluate the efficacy of peroxidase immobilized on corncob powder for the discoloration of dye. Peroxidase was extracted from soybean seed coat, followed by amination of the surface of the tertiary structure. The aminated peroxidase was immobilized on highly activated corncob powder and employed for the discoloration of bromophenol blue. Amination was performed with 10 or 50 mmol.L-1 carbodiimide and 1 mol.L-1 ethylenediamine. The amount of protein in the extract was 0.235 ± 0.011 mg.mL-1 and specific peroxidase activity was 86.06 ± 1.52 µmol min-1 . mg-1, using 1 mmol.L-1 ABTS as substrate. Ten mmol.L-1 and 50 mmol.L-1 aminated peroxidase retained 88 and 100% of the initial activity. Following covalent immobilization on a corncob powder-glyoxyl support, 10 and 50 mmol.L-1 aminated peroxidase retained 74 and 86% of activity, respectively. Derivatives were used for the discoloration of 0.02 mmol.L-1 bromophenol blue solution. After 30 min, 93 and 89% discoloration was achieved with the 10 mmol.L-1 and 50 mmol.L-1 derivatives, respectively. Moreover, these derivatives retained 60% of the catalytic properties when used three times. Peroxidase extracted from soybean seed coat immobilized on a low-cost corncob powder support exhibited improved thermal stability.
Resumo:
Pós-graduação em Química - IQ
Resumo:
The human dentition is naturally translucent, opalescent and fluorescent. Differences between the level of fluorescence of tooth structure and restorative materials may result in distinct metameric properties and consequently perceptible disparate esthetic behavior, which impairs the esthetic result of the restorations, frustrating both patients and staff. In this study, we evaluated the level of fluorescence of different composites (Durafill in tones A2 (Du), Charisma in tones A2 (Ch), Venus in tone A2 (Ve), Opallis enamel and dentin in tones A2 (OPD and OPE), Point 4 in tones A2 (P4), Z100 in tones A2 ( Z1), Z250 in tones A2 (Z2), Te-Econom in tones A2 (TE), Tetric Ceram in tones A2 (TC), Tetric Ceram N in tones A1, A2, A4 (TN1, TN2, TN4), Four seasons enamel and dentin in tones A2 (and 4SD 4SE), Empress Direct enamel and dentin in tones A2 (EDE and EDD) and Brilliant in tones A2 (Br)). Cylindrical specimens were prepared, coded and photographed in a standardized manner with a Canon EOS digital camera (400 ISO, 2.8 aperture and 1/ 30 speed), in a dark environment under the action of UV light (25 W). The images were analyzed with the software ScanWhite©-DMC/Darwin systems. The results showed statistical differences between the groups (p < 0.05), and between these same groups and the average fluorescence of the dentition of young (18 to 25 years) and adults (40 to 45 years) taken as control. It can be concluded that: Composites Z100, Z250 (3M ESPE) and Point 4 (Kerr) do not match with the fluorescence of human dentition and the fluorescence of the materials was found to be affected by their own tone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Objective. This study aimed to investigate the surface roughness of composite resins subjected to thermal cycles procedure. Materials and methods. Two microfill, four microhybrid and four nanofill composites were used. The surface roughness (Ra) was initially measured in a profilometer using a cut-off 0f 0.25 mm, after 3000 and 10,000 thermal cycles. Data were subjected to ANOVA and Fischer's test (alpha = 0.05). Results. Overall, 3000 thermal cycles increased the surface roughness values for all materials and there was a trend in all groups to decrease the roughness after 10,000 thermal cycles. Conclusions. The composition of material, including the type of organic matrix, could be more relevant to roughness maintenance over time than the general behavior of composites based on particles fillers. The maintenance of smooth surface in resin-based composite restorations is totally dependent of organic composition of the material.