922 resultados para PROPYLENE COPOLYMER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of block copolymers containing nonconjugated spacer and 3D pi-pi stacking structure with simultaneous blue-, green-, and yellow-emitting units has been synthesized and characterized. The dependence of the energy transfer and electroluminescence (EL) properties of these block copolymers on the contents of oligo(phenylenevinylene)s has been investigated. The block copolymer (GEO8-BEO-YEO4) with 98.8% blue-emitting oligomer (BEO), 0.8% green-emitting oligomer (GEO), and 0.4% yellow-emitting oligomer (YEO) showed the best electroluminescent performance, exhibiting a maximum luminance of 2309 cd/m(2) and efficiency of 0.34 cd/A. The single-layer-polymer light-emitting diodes device based on GEO2-BEO-YEO4 emitted greenish white light with the CIE coordinates of (0.26, 0.37) at 10 V. The synergetic effect of the efficient energy transfer and 3D pi-pi stack of these block copolymers on the photoiuminescent and electroluminescent properties are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coupling of drugs to macromolecular carriers received an important impetus from Ringsdorf's notion of polymer-drug conjugates. Several water-soluble polymers, poly(ethylene glycol), poly[N-(2-hydroxypropyl) methacrylamidel, poly(L-glutamic acid) and dextran, are studied intensively and have been utilized successfully in clinical research. The promising results arising from clinical trials with polymer-drug conjugates (e.g., paclitaxel, doxorubicin, camptothecins) have provided a firm foundation for other synthetic polymers, especially biodegradable polymers, used as drug delivery vehicles. This review discusses biodegradable polymeric micelles as an alternative drug-conjugate system. Particular focus is on A-B or B-A-B type biodegradable amphiphilic block copolymer such as polylactide, morpholine-2,5-dione derivatives and cyclic carbonates, which can form a core-shell micellar structure, with the hydrophobic drug-binding segment forming the hydrophobic core and the hydrophilic segment as a hydrated outer shell. Polymeric micelles can be designed to avoid uptake by cells of reticuloendothelial system and thus enhance their blood lifetime via the enhanced permeability and retention effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The copolymer poly(L-lactic acid)-b-poly(L-cysteine) (PLA-b-PCys) was co-electrospun with PLGA into ultrafine fibers. The reduced glutathione (GSH) was conjugated to the fiber surfaces via disulfide bonds. The glutathione S-transferase (GST) was captured onto the GSH fibers via specific substrate-enzyme interaction between the bound GSH and GST. The captured GST was eluted with free GSH aqueous solution and lyophilized to get pure GST powders. The results show that the GSH moieties on the fiber surface retain the bioactivity of the free GSH and thus they can bind specifically with GST and the GST in solution is captured onto the fiber surface. In addition, the bound GSH is not as active as free GSH so that the captured GST can be eluted off from the fiber by free GSH aqueous solution. Based on this principle, GST itself or its fused proteins can be separated and purified very easily. The preliminary purification efficiency is 6.5 mg center dot(g(PCys))(-1). Further improvements are undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystalline morphologies of spin-coated poly(L-lactic acid) (PLLA) thin films under different conditions are investigated mainly with atomic force microscopy (AFM) technique. When PLLA concentration in chloroform is varied from 0.01 to 1% gradually, disordered structure, rod-shape and larger spheres aggregates are observed in thin films subsequently. Under different annealing temperature, such as at 78, 102, 122 degrees C, respectively, we can find most rod-like crystalline aggregates. Interestingly, we observed that nucleation sites locate at the edge of the holes at the original crystalline stage. Then, these holes developed to form chrysanthemum-like and rods subsequently with annealing time meanwhile the size and the shape of crystalline aggregate are changed. In addition. effect of substrate and solvent on morphology is also discussed. On the other hand, the possible mechanism of crystalline morphology evolution is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The application of polyethylenimine (PEI) in gene delivery has been severely limited by significant cytotoxicity that results from a nondegradable methylene backbone and high cationic charge density. It is therefore necessary to develop novel biodegradable PEI derivates for low-toxic, highly efficient gene delivery.Methods A series of novel cationic copolymers with various charge density were designed and synthesized by grafting different kinds of oligoethylenimine (OEI) onto a determinate multi-armed poly(L-glutamic acid) backbone. The molecular structures of multi-armed poly(L-glutamic acid)-graft-OEI (MP-g-OEI) copolymers were characterized using nuclear magnetic resonance, viscosimetry and gel permeation chromatography. Moreover, the MP-g-OEI/DNA complexes were measured by a gel retardation assay, dynamic light scattering and atomic force microscopy to determine DNA binding ability, particle size, zeta potential, complex formation and shape, respectively. MP-g-OEI copolymers were also evaluated in Chinese hamster ovary and human embryonic kidney-293 cells for their cytotoxicity and transfection efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monte Carlo simulation on the basis of the comblike coarse grained nonpolar/polar (NP) model has been carried out to study the polar group saturation effect on physical gelation of amphiphilic polymer solutions. The effects of polar group saturation due to hydrogen bonding or ion bridging on the sol-gel phase diagram, microstructure of aggregates, and chain conformation of amphiphilic polymer solutions under four different solvent conditions to either the nonpolar backbone or the polar side chain in amphiphilic polymer chains have been investigated. It is found that an increase of polar group saturation results in a monotonically decreased critical concentration of gelation point, which can be qualitatively supported by the dynamic theological measurements on pectin aqueous solutions. Furthermore, various solvent conditions to either the backbone or the side chain have significant impact on both chain conformation and microstructure of aggregates. When the solvent is repulsive to the nonpolar backbone but attractive to the polar side chain, the polymer chains are collapsed, and the gelation follows the mechanism of colloidal packing; at the other solvent conditions, the gelation follows the mechanism of random aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new kind of luminescent organic-inorganic hydrid material consisting of Eu(III)-schiff base complex covalently bonded to silica xerogel was synthesized via the sol-gel method using a Eu (N-propylene salicylimine ligand) complex modified with pendant triethoxysilane groups (Eu(III)(salenHSi)). The Eu(III)(salenHSi) complex is characterized by Fourier transform infrared (FT-IR) spectroscopy. Luminescent properties of the complex and the resulted hybrid silica xerogels have been investigated at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Order-disorder transition (ODT) behavior in eicosylated polyethyleneimine (PEI20C) comblike polymer obtained by grafting n-eicosyl group on polyethyleneimine backbone was systematically investigated by the combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy as well as solid-state high resolution nuclear magnetic resonance (NMR) spectroscopy. DSC investigations showed two obvious transitions, assigned to the transitions (1) from orthorhombic to hexagonal and (2) from hexagonal to amorphous phase, respectively. These transitions are induced by the variations of alkyl side chain conformation and packing structure with temperature changing, which consequently lead to the destruction of original phase equilibrium. The ODT behavior can also be confirmed by spectroscopic methods like WAXD, FTIR and NMR. The ordered structure and the transition behavior of the alkyl side chains confined by the PEI backbone are obviously different from those of pristine normal alkanes. The transition mechanism of ODT and the origin of the phase transition behavior in PEI20C comblike polymer were discussed in detail in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the copolymer of acrylonitrile (AN), methyl methacrylate (MMA), and poly(ethylene glycol) methyl ether methacrylate as a backbone and poly(ethylene glycol) methyl ether (PEGME) with 1100 molecular weight as side chains, comb-like gel polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the gel copolymer electrolytes possess two glass transitions: alpha-transition and beta-transition. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T. as reference temperature. By reference to T-0 = 50 degrees C, the relation between log c, and c was found to be linear. The master curves are displaced progressively to higher frequencies as the content of plasticizer is increased. The relation between log tau(p) and the content of plasticizer is also linear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New carbazole-based copolymers, which contain various concentrations of 9-alkyl-3, 6-carbazole fragments in the main chain connected via alkylene spacers, have been synthesized by Ni(0)-catalyzed Yamamoto-type aryl-aryl coupling reactions. Full characterization of the copolymer structure by NMR spectroscopy and elemental analysis is presented. These compounds represent amorphous materials of high thermal stability with glass transition temperatures of 151-162 degrees C and thermal decomposition starting at temperatures > 390 degrees C. UV-Vis absorption and photoluminescence emission of the copolymers confirmed that the effectively conjugated segment in the 3,6-linked carbazole-type copolymers is limited to dyads (dimeric units). However, copolymers with varying concentrations of the oligocarbazole chromophores demonstrate different charge injection and transport properties in multilayer light-emitting diodes with the copolymers as the hole transport and Alq(3) as the electroluminescent/electron transport layer. The device based on a copolymer composed of oligocarbazole blocks with an average length of around four carbazoles exhibited the best overall performance with a turn-on voltage of 3.5 V, a maximal photometric efficiency of 4.1 cd center dot A(-1) and maximum brightness of about 4 200 cd center dot m(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel oxidation and water stable sulfonated polyimides (SPIs) were synthesized from 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), and wholly aromatic diamine 2,2'-bis(3-sulfobenzoyl) benzidine (2,2'-BSBB) for proton exchange membrane fuel cells. These polyimides could be cast into flexible and tough membranes from m-cresol solutions. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendant groups. Moreover, all BTDA-based SPI membranes exhibited much better water stability than those based on the conventional 1,4,5,8-naphthalenecarboxylic dianhydride. The improved water stability of BTDA-based polyimides was attributed to its unique binaphthalimide structure. The SPI membranes with ion exchange capacity (IEC) of 1.36-1.90 mequiv g(-1) had proton conductivity in the range of 0.41 x 10(-1) to 1. 12 x 10(-1) S cm(-1) at 20 degrees C. The membrane with IEC value of 1.90 mequiv g(-1) displayed reasonably higher proton conductivity than Nafion((R)) 117 (0.9 x 10(-1) S cm(-1)) under the same test condition and the high conductivity of 0.184 S cm(-1) was obtained at 80 degrees C. Microscopic analyses revealed that well-dispersed hydrophilic domains contribute to better proton conducting properties. These results showed that the synthesized materials might have the potential to be applied as the proton exchange membranes for PEMFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.