1000 resultados para PROGRAMACIÓN PARALELA (COMPUTADORES)
Resumo:
Se observa un desfase entre el concepto de patrimonio cultural que se plasma en los materiales de aula, principalmente libros de texto de la ESO y Bachillerato; y el concepto de patrimonio desde el que la tutela y gestión del patrimonio cultural se define desde mediados del siglo XX. Se proponen fórmulas para renovar la didáctica del patrimonio cultural teniendo como horizonte el Plan Nacional de Educación .
Resumo:
En este texto se utilizará el lenguaje de programación MatLab. Es una necesidad sentida en la Universidad de Medellín contar con un lenguaje que permita, de manera rápida, poner en práctica los conceptos teóricos tratados en las clases de Fundamentos de Programación y Programación Orientada a Objetos (para estudiantes de Ingeniera de Sistemas), lo que ha motivado la redacción de este texto. Su propósito es acercar a los estudiantes a una herramienta potente y fácil de utilizar en un tiempo reducido, con el fin de probar los algoritmos diseñados en clase y validarlos de acuerdo con los requerimientos impuestos. Se pretende con este texto servir de guía a los estudiantes de Fundamentos de Programación de la Universidad de Medellín y de otras universidades para que puedan poner en práctica los conceptos tratados en la clase teórica. En cada capítulo se presentan conceptos de los diferentes temas con ejemplos y problemas resueltos que le ayudarán a visualizar diversas maneras de construir algoritmos. Los problemas propuestos están pensados de tal manera que sirvan como base y ejercitación para otras asignaturas relacionadas con la programación de computadoras, como: Lenguajes de Programación, Estructuras de Datos, entre otras. De ahí la gran importancia de desarrollarlos, de tal manera, el estudiante conocerá las teorías y técnicas mediante las cuales podrá adquirir destrezas lógico-abstractas que le permitan conceptualizar e implementar algoritmos computacionales que solucionen problemas matemáticos mediante la estrategia de aprendizaje por ejemplos.
Resumo:
Hoje em dia o ensino e aprendizagem a distância online de nível universitário é, em grande medida, baseado em estratégias de aprendizagem colaborativa, onde, além de aprender sozinho, os estudantes também participam de ações colaborativas dentro de uma classe virtual. O nível de interação do estudante online representa um fator fundamental para o sucesso do processo de ensino-aprendizagem pois é a base da partilha de informação e construção do conhecimento entre estudantes e professores, enquanto todas as ações e atividades integram um modelo pedagógico comum. Existem muitas diferenças e desafios nas áreas de ensino em termos de instanciação do modelo pedagógico e adoção das estratégias de ensino-aprendizagem, como por exemplo, entre as áreas das ciências sociais e das engenharias. Uma área que atrai especial atenção como um todo é a das ciências da computação (CS), e de forma específica, a da programação de computadores. A programação de computadores exige, em primeiro lugar, o desenvolvimento de um bom raciocínio lógico e uma estratégia de resolução segundo uma abordagem “dividir para conquistar”, onde os principais problemas são divididos em problemas menores que são resolvidos individualmente. A programação exige também uma combinação entre o trabalho individual e em grupo, com elevados níveis de revisão e depuração do código fonte em desenvolvimento. O ensino online de programação de computadores é constituído por estes aspectos, exigindo um elevado grau de interação entre estudantes e entre estudantes e professor. Neste capítulo, vamos discutir e apresentar a nossa experiência no ensino online da programação de computadores com base no modelo pedagógico virtual da Universidade Aberta, e propor a sua instanciação e extensão específica para incluir novas estratégias de aprendizagem colaborativa e uma abordagem construtivista para o processo global de aprendizagem.
Resumo:
Uno de los grandes retos de la HPC (High Performance Computing) consiste en optimizar el subsistema de Entrada/Salida, (E/S), o I/O (Input/Output). Ken Batcher resume este hecho en la siguiente frase: "Un supercomputador es un dispositivo que convierte los problemas limitados por la potencia de cálculo en problemas limitados por la E/S" ("A Supercomputer is a device for turning compute-bound problems into I/O-bound problems") . En otras palabras, el cuello de botella ya no reside tanto en el procesamiento de los datos como en la disponibilidad de los mismos. Además, este problema se exacerbará con la llegada del Exascale y la popularización de las aplicaciones Big Data. En este contexto, esta tesis contribuye a mejorar el rendimiento y la facilidad de uso del subsistema de E/S de los sistemas de supercomputación. Principalmente se proponen dos contribuciones al respecto: i) una interfaz de E/S desarrollada para el lenguaje Chapel que mejora la productividad del programador a la hora de codificar las operaciones de E/S; y ii) una implementación optimizada del almacenamiento de datos de secuencias genéticas. Con más detalle, la primera contribución estudia y analiza distintas optimizaciones de la E/S en Chapel, al tiempo que provee a los usuarios de una interfaz simple para el acceso paralelo y distribuido a los datos contenidos en ficheros. Por tanto, contribuimos tanto a aumentar la productividad de los desarrolladores, como a que la implementación sea lo más óptima posible. La segunda contribución también se enmarca dentro de los problemas de E/S, pero en este caso se centra en mejorar el almacenamiento de los datos de secuencias genéticas, incluyendo su compresión, y en permitir un uso eficiente de esos datos por parte de las aplicaciones existentes, permitiendo una recuperación eficiente tanto de forma secuencial como aleatoria. Adicionalmente, proponemos una implementación paralela basada en Chapel.
Resumo:
Este trabajo fin de grado trata sobre la implementación de un simulador cinemático de un robot manipulador industrial, orientado al aprendizaje de los principios de programación y desarrollado mediante la herramienta de software matemático MATLAB, dicho simulador debe tener como características principales ser capaz de emular las características de programación que incorporan los lenguajes a nivel robot y resultar fácilmente accesible a los alumnos de las ingenierías. Asimismo, el simulador tendrá la capacidad de definir los objetos que integran el entorno físico que rodean al robot con el objeto de simular la interacción cinemática del brazo manipulador con dicho entorno. Para ello, primero se realizará un estudio de los lenguajes de nivel robot, en este caso concreto V+, con el objeto de elaborar un catálogo de funciones y estructuras relevantes, concretamente se trataran las estructuras de datos, funciones del robot, etc. A partir de estos, se elaborarán las especificaciones que debe cumplir el simulador cinemático. Por último se realizarán unas prácticas sobre el simulador orientadas al aprendizaje y elaboración de los manuales de usuario del mismo.
Resumo:
Dissertação (mestrado)–Universidade de Brasília, Universidade UnB de Planaltina, Programa de Pós-Graduação em Ciência de Materiais, 2015.
Resumo:
En este texto se utilizará el lenguaje de programación Visual Basic. NET. Dicho lenguaje es uno de los más populares en el mundo por su facilidad para diseñar aplicaciones cada vez más robustas; permite crear aplicaciones para Windows de una forma sencilla. La palabra visual hace referencia a la forma en que se van diseñando las aplicaciones, y al aspecto gráfico que toman los diferentes objetos en el momento de ejecutar las aplicaciones; la palabra NET hace referencia al medio donde se ejecutarán las aplicaciones diseñadas. La necesidad sentida en las universidades y politécnicos de contar con un lenguaje que permita de manera rápida poner en práctica los conceptos teóricos tratados en las clases de Fundamentos de Programación y Programación Orientada a Objetos (para estudiantes de Ingeniería de Sistemas) ha motivado la redacción de este texto. Su propósito es acercar a estudiantes a una herramienta potente y fácil de utilizar en un tiempo reducido, con el fin de probar los algoritmos diseñados en clase y validarlos de acuerdo con los requerimientos impuestos. Se pretende con este texto servir de guía a los estudiantes de Fundamentos de Programación de la Universidad de Medellín y de otras universidades para que puedan poner en práctica los conceptos tratados en la clase teórica.
Resumo:
Incluye referencias bibliográficas e índice. CONTENIDO: Introducción -- Elección de una herramienta de simulación -- Instalación de OMNET -- Lenguajes de OMNET++ -- Ejemplo Tic-Toc -- Simulación de esquemas de encolamiento.
Resumo:
La diferenciación y el soporte en calidad de servicio es utilizada en muchas arquitecturas de red, técnicas y frameworks, tales como IP, con los esquemas de DiffServ e IntServ, redes NGN, GMPLS (Generalized Multiprotocol Label Switching) y redes ópticas, entre otras. Actualmente, la calidad de servicio no es solo una cuestión técnica, sino que se ha convertido en un producto que puede ser visto desde numerosas perspectivas, en las que los clientes, cada día, demandan más servicios, de mayor calidad. Por lo tanto, los proveedores deben mejorar sus implementaciones para permanecer en este reñido mercado (Piotr, Stankiewicz, Cholda, & Jajszczyk, 2011). En este contexto, las redes actuales deben garantizar la calidad en los servicios sin importar el incremento paulatino de usuarios y dispositivos de interconectividad. La mejor manera de hacerlo no es necesariamente invirtiendo en la infraestructura más moderna que soporte técnicas para este fin. Existen mecanismos que se pueden aplicar sobre infraestructuras de red actuales, las cuales ayudan a manejar el tráfico de manera adecuada, de tal manera que los parámetros de calidad de servicio se mantengan dentro de los límites permisibles establecidos por la Recomendación Y.1541 (UIT, 2011a).
Resumo:
Hoy en día, las herramientas de simulación son un componente fundamental para el diseño, la implementación y el monitoreo de redes de comunicación, porque permiten predecir el comportamiento de diferentes eventos que pueden afectar el desempeño de la red y degradar la calidad de las aplicaciones y los servicios. Como presenta Cuéllar (2011) las herramientas de simulación juegan un papel importante para evaluar el comportamiento de parámetros como el retardo y el jitter en una red, porque permiten la recreación de escenarios reales con el fin de analizar su desempeño, sin tener que implementar infraestructura física. Además, las simulaciones permiten tener en cuenta numerosas variables y son un método eficaz para la enseñanza y la investigación. La simulación no es un concepto nuevo; siempre se ha buscado la manera de evaluar sistemas complejos y tal como define Phillips (2007), la simulación es la ejecución de un modelo representado por un programa de computadora que permite recrear entornos de red, ahorrando tiempo y dinero. Comercialmente existen simuladores de tiempo continuo y tiempo discreto; la simulación en tiempo discreto modela sistemas que cambian en el tiempo de acuerdo con los diferentes estados que una variable puede tener, algo muy útil para sistemas de comunicación. Los simuladores de tiempo continuo, por su parte, avanzan en el tiempo y constantemente revisan si ha ocurrido algún evento, con el fin de actualizar las variables correspondientes, para, solo en ese caso, realizar la modificación de valores.
Resumo:
En este capítulo se explica la instalación de OMNET y del INET Framework en ambiente Windows 7, para un sistema operativo de 64 bits. Para un ambiente diferente –o para mayor información– se recomienda consultar el manual de instalación de OMNeT ++ (Varga, 2011), publicado en http://omnetpp.org/doc/ omnetpp/InstallGuide.pdf (actualmente la versión disponible es la 4.2.2).
Resumo:
Los programas de simulación son desarrollados en diferentes lenguajes, los cuales le permiten al programador definir los comportamientos de las simulaciones. En OMNeT++ se utilizan dos tipos de lenguaje: el primero de ellos, es desarrollado para implementar la parte gráfica de OMNeT++, su nombre es NED; el segundo, es utilizado para desarrollar la parte lógica del proyecto, C++. En este capítulo, se explican ambos lenguajes y algunas características necesarias para lograr una implementación en OMNeT++. El lenguaje NED es una de las principales características de OMNeT++, ya que es quien le permite al usuario describir la estructura del modelo de simulación; en otras palabras, el lenguaje NED se utiliza para la descripción de las redes. Con este grupo de reglas sintácticas y semánticas es posible declarar módulos simples, los cuales representan elementos de la red, y módulos compuestos, que son grupos de módulos simples que trabajan de manera conjunta. También es posible referirse a la red como un módulo compuesto.