920 resultados para PRODUCTION OF TOXINS
Resumo:
Influence of different foliar fertilizers (phosphite, micronutrients, biostimulant, phosphite + micronutrients, phosphite + biostimulant, micronutrients + biostimulant and phosphite + micronutrients + biostimulant) on yield of sugarcane was evaluated after fertilization at 30, 90 and 150 days after harvesting two-year-old sugarcane. The experiment was carried out in a commercial crop employing a randomized block design in four replicates. Higher stalk masses were observed for fertilization at 30 days after harvest, and the higher content of sucrose, total recoverable sugar and Brix degrees were observed for sugarcane fertilized after 150 days. Statistical analysis (Duncan's test) revealed no significant variation (P & 0.05) in Brix degree, sucrose content and total recoverable sugar. For total recoverable sugar x stalk weight (the main payment type for sugarcane producers), the following sequence (time treatment, fertilizer composition) 30-days, micronutrient + biostimulant; 150-days, biostimulant; and 90-days, biostimulant increased 11%, 17%, and 21% the yield of sugarcane. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.
Resumo:
The first measurement of vector-boson production associated with a top quark-antiquark pair in proton-proton collisions at √s=7 TeV is presented. The results are based on a data set corresponding to an integrated luminosity of 5.0 fb-1, recorded by the CMS detector at the LHC in 2011. The measurement is performed in two independent channels through a trilepton analysis of tt̄Z events and a same-sign dilepton analysis of tt̄V (V=W or Z) events. In the trilepton channel a direct measurement of the tt̄Z cross section σtt̄Z=0.28-0.11+0.14 (stat)-0.03+0.06 (syst) pb is obtained. In the dilepton channel a measurement of the tt̄V cross section yields σtt̄V=0.43-0.15+0.17 (stat)-0.07+0.09 (syst) pb. These measurements have a significance, respectively, of 3.3 and 3.0 standard deviations from the background hypotheses and are compatible, within uncertainties, with the corresponding next-to-leading order predictions of 0.137-0.016+0.012 and 0.306-0.053+0.031 pb. © 2013 CERN. Published by the American Physical Society.
Resumo:
The substitution of steel as a raw material in the production of axial pistons for pressure washers by polyphthalamide, polytetrafluoroethylene and glass fiber-based composite was studied. The new production process with composite consists of only two steps, while the production of the steel piston is to comprise of thirteen steps. This replacement would result in an estimated reduction of 80% of water consumption, 83% of electricity consumption, 73% of the total cost and 88% of the final mass. With regard to the main mechanical properties required for the end product, the composite was found to withstand the critical axial loads and it shows acceptable wear resistance in an environment without lubrication, an additional advantage of this replacement. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Turmeric oleoresin is a colorant prepared by solvent extraction of turmeric (Curcuma longa L.). Curcumin, the major pigment present in turmeric, has been described as a potent antioxidant, anti-inflammatory and anticarcinogenic agent. Turmeric pigments are lipid soluble and water insoluble and are sensitive to light, heat, oxygen and pH, which can be overcome by microencapsulation of turmeric oleoresin. The aim of this work was to investigate microencapsulation of turmeric oleoresin by complex coacervation using gelatin and gum Arabic as encapsulants and freeze-drying as the drying method. The coacervation process was studied by varying the concentration of biopolymer solution (2.5, 5.0 and 7.5%) and the core material: total encapsulant ratio (25, 50, 75 and 100%). Microcapsules were evaluated for encapsulation efficiency, morphology, solubility and stability to light. Encapsulation efficiency ranged from 49 to 73% and samples produced with 2.5% of wall material and 100% core: encapsulant ratio showed better stability to light. © 2012 Wiley Periodicals, Inc.
Resumo:
The purpose of this work was to determine the levels of protein and the amino acid distribution in the cell mass of yeast strains (Saccharomyces sensu stricto) originated from Brazilian bioethanol industries. The protein was analyzed with the Kjeldahl method and the amino acids, by using high-performance liquid chromatography (HPLC). The percentages of the protein found ranged from 39 to 49%. The results show that in spite of some variation in numbers between the different yeast strains, all of them presented an amino acid profile similar to the one in the literature for S. cerevisae. The amino acids that have occurred in the largest amounts were: aspartic, glutamic acids and lysine, and those in the lowest amounts were: cysteine and methionine. Although the characteristics of the feedstock used and the process conditions are determinant of the protein values obtained in dry mass, this work elucidates that the intrinsic properties of the yeast strain influence these values.
Resumo:
The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
A search for exclusive or quasi-exclusive W+W- production by photon-photon interactions, pp → p(*)W +W-p(*), at √s=7 TeV is reported using data collected by the CMS detector with an integrated luminosity of 5.05 fb-1. Events are selected by requiring a μ ±e∓ vertex with no additional associated charged tracks and dilepton transverse momentum p T(μ ±e∓) > 30 GeV. Two events passing all selection requirements are observed in the data, compared to a standard model expectation of 2.2 ± 0.4 signal events with 0.84 ± 0.15 background. The tail of the dilepton p T distribution is studied for deviations from the standard model. No events are observed with p T > 100 GeV. Model-independent upper limits are computed and compared to predictions involving anomalous quartic gauge couplings. The limits on the parameters α0,C W/λ2 with a dipole form factor and an energy cutoff Λcutoff = 500 GeV are of the order of 10-4. © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic values for persistency. However, if the breeding goal is to improve only milk yield, the traditional selection index is indicated. © 2013 American Dairy Science Association.
Resumo:
The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production of xylooligosaccharides (XOS) using a packed-bed enzymatic reactor was studied at lab-scale. For this, a xylanase from Aspergillus versicolor was immobilized on different supports. The optimal derivative was xylanase immobilized on glyoxyl-agarose supports. This derivative preserved 85% of its catalytic activity; it was around 700-fold more stable than the soluble enzyme after incubation at 60. °C and was able to be reused for at least 10 1. h-cycles retaining full catalytic activity. About 18% of oligosaccharides with prebiotic interest (X2-X6) were produced by the glyoxyl derivative in batch hydrolysis. The production of xylobiose was 2.5-fold higher using the immobilized preparation than with soluble enzyme and small concentrations of xylose (<0.1%) were observed only at the end of the reaction. The derivative was employed on a packed bed reactor, and the continuous operation with no recirculation reached 56% and 70% of the end of reaction with flow rates of 60. mL/h and 12. mL/h, respectively. In continuous operation with recirculation at a flow rate of 60. mL/h, the reaction was completed after four hours. © 2013 Elsevier B.V.
Resumo:
Listeria monocytogenes, considered as one of the most important foodborne pathogens, is easily found on surfaces, particularly in the form of a biofilm. Biofilms are aggregates of cells that facilitate the persistence of these pathogens in food processing environments conferring resistance to the processes of cleaning and may cause contamination of food during processing, thus, representing a danger to public health. Little is known about the dynamics of the formation and regulation of biofilm production in L.monocytogenes, but several authors reported that the luxS gene may be a precursor in this process. In addition, the product of the inlA gene is responsible for facilitating the entry of the microorganism into epithelial cells that express the receptor E-cadherin, also participates in surface attachment. Thus, 32 strains of L.monocytogenes isolated from different foods (milk and vegetables) and from food processing environments were analyzed for the presence of these genes and their ability to form biofilms on three different surfaces often used in the food industry and retail (polystyrene, glass and stainless steel) at different temperatures (4, 20 and 30°C). All strains had the ilnA gene and 25 out of 32 strains (78.1%) were positive for the presence of the luxS gene, but all strains produced biofilm in at least one of the temperatures and materials tested. This suggests that genes in addition to luxS may participate in this process, but were not the decisive factors for biofilm formation. The bacteria adhered better to hydrophilic surfaces (stainless steel and glass) than to hydrophobic ones (polystyrene), since at 20°C for 24h, 30 (93.8%) and 26 (81.3%) produced biofilm in stainless steel and glass, respectively, and just 2 (6.2%) in polystyrene. The incubation time seemed to be an important factor in the process of biofilm formation, mainly at 35°C for 48h, because the results showed a decrease from 30 (93.8%) to 20 (62.5%) and from 27 (84.4%) to 12 (37.5%), on stainless steel and glass, respectively, although this was not significant (. p=0.3847). We conclude that L.monocytogenes is capable of forming biofilm on different surfaces independent of temperature, but the surface composition may be important factor for a faster development of biofilm. © 2013 Elsevier Ltd.