951 resultados para POOL DE OPERADORES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in abrupt slop of depression, this paper builds sedimentary system and model, sandy bodies distribution, and pool-forming mechanism of subtle trap. There are some conclusions and views as follows. By a lot of well logging and seismic analysis, the author founded up the sequence stratigraphic of the abrupt slope, systematically illustrated the abrupt slope constructive framework, and pointed out that there was a special characteristics which was that south-north could be divided to several fault block and east-west could be carved up groove and the bridge in studying area. Based all these, the author divided the studying area to 3 fault block zone in which because of the groove became the basement rock channel down which ancient rivers breathed into the lake, the alluvial fan or fan delta were formed. In the paper, the author illustrated the depositional system and depositional model of abrupt slope zone, and distinguished 16 kinds of lithofacies and 3 kinds of depositional systems which were the alluvial fan and fan-delta system, lake system and the turbidite fan or turbidity current deposition. It is first time to expound completely the genetic pattern and distributing rule of the abrupt slope sandy-conglomeratic fan bodies. The abrupt slope sandy-conglomeratic fan bodies distribute around the heaves showing itself circularity shape. In studying area, the sandy-conglomeratic fan bodies mainly distribute up the southern slope of Binxian heave and Chenjiazhuang heave. There mainly are these sandy-conglomeratic fan body colony which distributes at a wide rage including the alluvial fan, sub-water fluvial and the turbidite fan or the other turbidity current deposition in the I fault block of the Wangzhuang area. In the II fault block there are fan-delta front and sub-water fluvial. And in the Binnan area, there mainly are those the alluvial fan (down the basement rock channel) and the sandy-conglomeratic fan body which formed as narrowband sub-water fluvial (the position of bridge of a nose) in the I fault block, the fan-delta front sandy-conglomeratic fan body in the H fault block and the fan-delta front and the turbidity current deposition sandy-conglomeratic fan body in the m fault block. Based on the reservoir outstanding characteristics of complex classic composition and the low texture maturity, the author comparted the reservoir micro-structure of the Sha-III and Sha-IV member to 4 types including the viscous crude cementation type, the pad cementation type, the calcite pore-funds type and the complex filling type, and hereby synthetically evaluated 4 types sandy- conglomeratic fan body reservoir. In the west-north abrupt slope zone of Dongying Depression, the crude oil source is belonging to the Sha-III and Sha-IV member, the deep oil of Lijin oilfield respectively come from the Sha-III and Sha-IV member, which belongs to the autogeny and original deposition type; and the more crude oil producing by Sha-IV member was migrated to the Wangzhuan area and Zhengjia area. The crude oil of Binnan oil-field and Shanjiasi oil-field belongs to mixed genetic. It is the first time to illustrate systematically the genetic of the viscous crude that largely being in the studying area, which are that the dissipation of the light component after pool-forming, the biological gradation action and the bath-oxidation action, these oil accumulation belonging to the secondary viscous crude accumulation. It is also the first time to compart the studying area to 5 pool-forming dynamical system that have the characteristic including the common pressure and abnormal pressure system, the self-fountain and other-fountain system and the closing and half-closing system etc. The 5 dynamical systems reciprocally interconnected via the disappearance or merger of the Ethology and the fluid pressure compartment zone, the fault and the unconformity surface, hereby formed duplicated pattern oil-gas collecting zone. Three oil-gas pool-forming pattern were founded, which included the self-fountain side-direction migrated collecting pattern, the self-fountain side-direction ladder-shape pool-forming pattern and the other-fountain pressure releasing zone migrated collecting pattern. A series of systemic sandy-conglomeratic fan bodies oil-gas predicting theory and method was founded, based on the groove-fan corresponding relation to confirm the favorable aim area, according as the characteristic of seismic-facies to identify qualitatively the sandy-conglomeratic fan bodies or its scale, used the temporal and frequency analysis technique to score the interior structure of the sandy- conglomeratic fan bodies, applied for coherent-data system analysis technology to describe the boundary of the sandy-conglomeratic fan bodies, and utilized the well logging restriction inversion technique to trace quantificational and forecast the sandy-conglomeratic fan bodies. Applied this technique, totally 15 beneficial sandy-conglomeratic fan bodies were predicted, in studying area the exploration was preferably guided, and the larger economic benefit and social benefit was acquired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is the key project of SINOPEC at ninth five years period with a lot of work and very difficult, which the main object are the study of pool-forming mechanism, distribution rule and pool-forming model of complex secondary pool at Dongying formation in high mature exploration area, and building theories and methods of research, description and prediction of secondary fault block pool. This paper apply comprehensively with various theories, method and techniques of geology, seismic, well log, reservoir engineering, meanwhile apply with computer means, then adopt combination of quality and quantitative to develop studies of pool-forming mechanism, model and pool prediction of fault block pool. On the based of stretch, strike-slip, reversal structure theories, integrated the geometry, kinematics, and dynamics of structure, it is show that the structure framework, the structure evolve, formation mechanism of central uplift belt of Dongying depression and control to formation and distribute of secondary complex fault block pool. The opening and sealing properties, sealing mechanism and sealing models of pool-controlling fault are shown by using quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The sealing history of controlling fault, formation mechanism and distribute the regulation are established by combining together with bury history, structure evolve history, fault growth history stress field evolve history, which can be guide exploration and production oil field. It were bring up for the first time the dynamics mechanism of Dongying central uplift which were the result of compound tress field of stretch, strike-slip and reversal, companion with reversal drag structure, arcogenesis of paste and salt beds. The dual function of migration and sealing of fault were demonstrated in the research area. The ability of migration and sealing oil of pool-controlling fault is controlled by those factors of style of fault combination, activity regulation and intensity of fault at the period of oil migration. The four kinds of sealing model of pool-controlling fault were established in the research area, which the sealing mechanism of fault and distribution regulation of oil in time and space. The sealing ability of fault were controlled by quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The fuzzy judge of fault sealing is the base of prediction of secondary pool. The pool-forming model of secondary was established in the research area, which the main factors are ability migration and sealing. The transform zone of fault, inner of arc fault and the compound area of multi fault are enrichment region of secondary pool of Dongying formation, which are confirm by exploration with economic performance and social performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qianmiqiao buried hill, which is a high-yield burial hill pool, was discovered at Dagang oilfield in 1998. To employ the integrated geological and geophysical research at Qianmiqiao area, it is very valuable and meaningful for the petroleum exploration of Bohai Bay Basin and even the whole country. Based on the previous results, this paper is carried out from the research on Huanghua depression, following the law, i.e. the deep part constrains the shallow, the regional constrains the local, takes the geophysical research in Qianmiqiao oilfield, discusses the formation history of burial hills, burial history, thermal history, the generated and expelling history of hydrocarbon, and migration characteristics, probes into the formation of burial hill pool. This paper uses the gravity and magnetic methods which are based on potential field, with natural sources, configures the inner structure of the earth according to the difference in the density and magnetism of the rock. The geophysical characteristics of Dagang oil field is that it is an area with positive Buge gravity anomal. The upheaval of Moho boundary is in mirror symmetry with the depression of the basin's basement. The positive and negative anomaly distributein axis symmetry, and the orientation is NNE. The thickness of the crust gradually reduces from west to east, from land to sea. The depth gradient strip of Curie surface is similar to Moho boundary, whereas their local buried depth is different. Local fractures imply that the orientation of base rock fractures is NNE-NE, and the base rock is intersected by the fractures of the same/ later term, whose orientation is NW, so the base rock likes rhombic mosaic. The results of tomography show that there exists significant asymmetry in vertical and horizontal direction in the velocity configuration of Huanghua depression. From Dezhou to Tianjin, there exits high-speed block, which extends from south to north. The bottom of this high-speed block is in good agreement with the depth of Moho boundary. Hence we can conclude that the high-speed block is actually the crystal basement. According to seismic data, well data and outcrop data, Huanghua depression can be divided into four structure layers, i.e. Pi,2-T, Ji,2-K, E, N-Q. Qianmiqiao burial hills undergo many tectonic movement, where reverse faults in developed in inner burial hill from Indosinian stage to Yanshanian stage, the normal faults extended in Himalayan stage. Under the influence of tectonic movements, the burial hills show three layers, i.e. the reverse rushing faults in buried hills, paleo-residual hill, and extended horst block. The evolution of burial hills can be divided into four stages: steady raising period from Calenonian to early Hercynian, rushing brake drape period from Indosinian to middle Yanshanian, block tilting period in early Tertiary, and heating depression period from late Tertiary to Quaternary. The basin modeling softwares BasinMod 1-D and Basin 2-D, which are made by PRA corporation, are used in this paper, according to the requirement, corresponding geological model is designed. And we model the burial history, thermal history, hydrocarbon generation and hydrocarbon expelling history of Qianmiqiao area. The results show that present bury depth is the deepest in the geological history, the sedimentary rate of Tertiary is highest and its rising rate of temperature rate is higher. During sedimentary history, there is no large erosion, and in the Tertiary, the deeper sediment was deposited in large space, therefore it is in favor of the conservation and transformation of oil and gas. The thermal research shows that the heat primarily comes from basement of the basin, present geotherm is the highest temperature in the geological history. Major source rock is the strata of ES3, whose organic is abundant, good-typed, maturative and of high-expulsive efficiency. The organic evolution of source rock of O has come to the overmature stage, the evolving time is long and the source rock can be easily destroyed. Therefore it is more difficult for the O formation source rock to form the huge accumulation of oil and gas than Es3 formation. In the research of oil assembling, we first calculated the characteristics of the fluid pressure of single well, then analyzed the distribution of the surplus fluid pressure of each formation and profile, and probe the first hydrocarbon migration situation and the distribution of pressure system of buried hill pool. In every formation, the pressure system of each burial hill has its own characteristics, e.g. high pressure or low pressure. In the research of secondary migration, the fluid potential is calculated while the relative low potential area is figured out. In Qianmiqiao area, the west margin faults have the low potential, and hence is the favorable reconnoiter belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"富台潜山裂缝油藏定量表征和预测"是中石化集团总公司"十五"科技攻关课题,也是国际攻关学科前沿难题,工作量大,有重要理论意义和实用价值。综合应用石油构造地质学、岩石力学、储层地质学、石油地质学、地震地层学,测井地质学、数学地质和油藏工程等多学科理论为指导,将地质、地震、测井、试油试采和油藏工程等信息相结合、露头区和覆盖区相结合、油区、油田和油藏地质模型相结合,最大限度应用计算机手段,研究、描述和表征目的层油藏内幕构造,储层几何形态、空间形成机制分布和非均质性,实现露头规模、岩心规模、微观规模裂缝网络定量表征,揭示岩溶作用类型形成机制和分布规律,开展潜山裂缝三重孔隙结构测井储层评价,揭示流体性质和分布规律,建立潜山油藏露头规范、岩心数模静态地质模型,潜山油藏三重孔隙结构地质模型和潜山油藏预测地质模型,指导油田开发,降低开发成本,大幅度提高开发效益。取得的主要成果创新是:1.建立了研究区下古生界地层格架,揭示了下古生界储层几何形态、空间分布和形成机制。2.首次提出富台潜山是中生代逆冲挤压、走滑和新生代伸展、走滑两个构造系统叠加复合的产物,是逆冲断层控制的断展背斜。储集空间主要是断展背斜上经风化、溶蚀改造近SN、EW走向的纵、横张裂隙,其次是被改造的两组平面X剪裂缝。3.建立了富台潜山裂缝油藏燕山期、喜山期四维应力场模型,预测了研究区张破裂和剪破裂带分布规律。4.论述了研究区岩溶作用模型,揭示了岩溶作用与成藏的关系。5.建立了研究区露头规模、岩心规模、微观规模、测井裂缝和有效裂缝网络预测模型,预测了裂缝发育分布规律。6.建立了三重孔隙结构测井储层预测模型。生产检验符合率为80%。7.建立了富台潜山油藏静态、动态和预测模型,预测了裂缝带的分布。8.开发了一套潜山油藏研究、描述、表征和预测的理论、方法和技术,发展了陆相断陷湖盆的理论、方法和技术,有极大的推广价值。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Corporation's key project. Although it is difficult and great workload, it has important theoretical and practical value. Its targets is to establish 4 dimension stress fields of complex fault block groups, and then to predict the forming mechanism and distribution rule of petroleum pools, by applying the most advanced theories, methods and technology and the most sophisticated software in highly explored zones. By means of multi-discipline theories, methods, technologies and multi-source information, using computer with maximum efforts, investigating the strata framework, structure framework, petroleum pool forming mechanism and forming mode of complex fault block groups, several results have been achieved as following: The fastigiated mode of Xianhe complex fault block groups was established, pointed out the control function of pool accumulate in Xianhe complex fault block groups Xianhe fastigiated complex fault block groups are the results of combining stress of extending, slipping and reversing, which formed in early Shahejie stage, changed and perplexed during Dongying stage and that control the forming and destruction of petroleum pools. By measuring the earth stress and rock mechanics parameters in the research region, the model of 4 dimension stress field and potential fields of migrating fluids was established from ES3 stage to current, with their space distribution and time evolve and petroleum accumulate. The fault-sealing model in Xianhe complex fault block groups was established, which reveal the sealing mechanism of petroleum about control-fault, made for petroleum pool prediction in complex fault block. The petroleum pool forming mode and mechanism in complex fault block was established. Petroleum distribution were predicted in three stress inverse zones, and remaining oil were point out in the high points of 2 micro-structures and the region with strong fault-sealing capabilities. (6). A set of theories, technology and methods of complex fault block petroleum pool have been developed, bring on an improvement of the development geology theory in continental fault depression lake basin, good economic benefits have been obtained by applying on both east and west areas of our country.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Corporation's science and technology project. Although it is difficult, it has important theoretical and practical value. The study was aimed to reveal inhomogeneity of two kinds of reservoirs of fan-shaped delta and braided river by using new theories, new methods and new technology about 3-D model building and reservoir knowledge repository throughout the world, and to build reservoir knowledge repository and 3-D geological model which would predict the type of sand body forming reason and distribution rule in order to improve exploration result in Qiuling oil fields. Multi-discipline theories such as petroleum structure geology, reservoir geology, petroleum geology, sequence geology, logging geology, geomathematics and so on are used as guide. The information of geology, seism, logging and production test is combined. Outcrop area and overlap area are combined. By making full use of computer, stable structure, reservoir geometric shape, spatial distribution and inhomogeneity of bed of interest are investigated, described and characterized. Petroleum pool 3-D static geological model of reservoir knowledge repository was built. Sand body distribution was predicted. It has guided oil development, lowed the investment and improved development benefits. Several results are achieved as follows: (1) Strata framework of Sanjianfang group in Qiuling oil field has been established. (2) Geometric shape, spatial distribution and evolve rule of two different forming reason's reservoir of fan-shaped delta and braided river of Sanjianfang group in Qiuling oil field are discussed. (3) The two kinds of reservoirs have lower pore and permeability and very strong inhomogeneity. (4) Reservoir knowledge repository of two different forming reasons has been built of Sanjianfang group, which includes 5 geological knowledge sublibrary. (5) 3-D geological model of two kinds of forming reason's reservoirs has been built. (6) That same sequence instruction a simulation and probability field were used to predict sand body of Sanjianfang group was put forward. Coincidence rate is high after production test. It shows this method has great popularity value. (7) A set of theories, methods and technologies of knowledge repository of two kinds of reservoir of braided river and fan-shaped delta and 3-D geological model building were finished. (8) A set of theories, methods and technologies of investigating, describing, characterizing and predicting two kinds of oil pool were developed. It gets noticeable economic benefit after exploration. Theory and method about extrusion basin are developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Industry Corporation's key project. Although it is very difficult, it has important theoretical and practical value. Its targets is to make lithological petroleum pool exploration great breakthrough in Dongying sag, by applying advanced theories, the last-minute methods and technology in highly explored zones. By using synthetically multi- discipline theories, methods and technology such as petroleum geology, sedimentology, structure geology, rock mechanics, dynamics of petroleum pool formation, geochemistry, geophysics and so on, and by making full use of computer , the process of petroleum pool forming and distribution rules of lithological petroleum pools have been thoroughly investigated and analyzed in sharp-slope, gentle-slope as well as low-lying region of Dongying sag including dynamic and static. With the study of tectonic stress field, fluid potential field and pressure field, we revealed dynamics condition, distribution rule, control factors and petroleum forming mechanism of lithological pool, and established the forming mode of lithological pool of Dongying sag. The main conclusion as follow: Strata framework, structure framework and sedimentary system of Dongying sag have been established which were the basis of petroleum prediction. There are three kinds of oil source which were from Es4,Es3 and mixed type, also three petroleum forming phases which were the telophase of Dongying stage, Guantao stage and Minghuazhen group, which occur in different geological environment. By using of most advanced numerical modeling software, the space distribution and time evolve of stress field and fluid potential field have been revealed from Esl up to the present. The region with low earth stress and low fluid potential were enrichment region of lithological petroleum pool and fault-block pool. The dynamics mechanism of Lithological petroleum pool in Dongying sag was collocating seal box, abnormity pressure, index number of petroleum forming and static factors on time and space, which was the most important factor of controlling petroleum pool forming, distribution and enrichment. The multi phase active and evolve of seal and unseal about different order fault were main factors of controlling petroleum pool forming of Dongying sag, which have important value for predicting lithological petroleum pool. It is revealed the lithological petroleum pool forming mode that included respective character, forming mechanism and distribution rule in four structural belt, which was a base for lithological petroleum pool prediction. The theories, technology and methods of studying, description, characterize and prediction lithological petroleum pool were established, which have important popularization value. Several lithological pool have been predicted in stress transform, zone, abrupt slope zone, fractured surface changed zone, tosional stress growth zone and abnormity pressure zone with noticeable economic benefit after exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bedding sequences, based on the results from others, have been constructed by geological researches. Furthermore, the reservoir, gas-bearing characteristics and reservoir-blanket association have been increasingly understudied by the geological and seismic studies as well as the log data. The deep dynamics for the formation and development of Shangdu basin resulted from complicated fault system and its continued action have been obtained. The studies on the reservoir condition reveal that the mantle-derived magmatism provided the materials for the CO_2 gas reservoir after Paleogene Period and the huge regional fault not only control the evolution of basin and sedimentary but also pay a role as a passage of the CO_2. The sandstone of river course formed in Paleogene System, with very good reservoir condition, are widely developed in the study area. The blanket with good condition is composed by the basalt in Hannuoba Formation and lake facies shale of Shangdou Formation. Local structures and good encirclement are resulted from the different sedimentary environment and later differential sagging. All statements above demonstrate that there is a very good pool-forming condition for the CO_2. In addition, the high abundance of H_2 recognized during drill exploration are also of significance.More than 30 inorganic CO_2 gas reservoirs have been determined during the exploration for the oil-bearing basins in the eastern China, which are developed along the two sides of Tanlu Fault or within it. In which the CO_2 gas reservoir in Shangdou basin is an inorganic gas reservoir far away from Tanlu Fault. Thus the determination of the CO_2 gas reservoir in Shangdou basin is significant for sciences due to the first exploration for the inorganic CO_2 gas reservoir in our country. The geophysical exploration carried on the CO_2 gas reservoir is benefited for the research of prospecting techniques of CO_2 reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gaochentou region is located in the southwest direction of Gaochentou village in Huanghua city of Hebei province. In regionally structural position, It lies in Qikou sag In the middle part of Huanghua depression, which belongs to the east part of the south Dagang structure zone in the middle part of Huanghua depression. Its' very beneficial at regional structure in Gaochentou , and It becomes the advantage area for oil and gas gathered and preserved, Sandstone reservoir of Dongying Formation is main bearing bed .Dongying Formation in Gaochentou region of Huanghua depression is consisted of set of mudstone and sandstone interbeds by deposited delta fades . Dongying Formation can be divided into 3 members from above to below: the first member of Dongying Formation (FMDF), the second member of Dongying Formation (SMDF), and third member of Dongying Formation (TMDF). The lithology of the upper part of FMDF was consisted of mostly middle-grained and fine-grained sandstone, and it is small for the oil-bearing area of the sand bodies .The lithology of the lower part is coarse-grained sandstone bodies which are well connected between sandstone bodies of wells, and the lower part was main bed of oil production in Dongying Formation; SMDF and TMDF are consisted of larger scale set of mudstone, in which the sandbodies are lenticular and pinch out quickly, and the lithology was mostly fine sandstone and silt stone, in which there are little oil and gas .Because the reservoirs in this area are largely influenced by the factors such as lithology, fault and others, and the reservoirs have the strong,heterogeneity , there exists the problem of oil-down and water-up for vertical distribution of oil and gas bearing. It is not very clearly for the three dimension distribution of sandstone , and the geology researchs is not enough. So, it can't satisfy the need of further development and production for Gaochentou oilfield.Having the key problem of oil-down and water-up and the mechanism of the reservoir for Gaochentou area, There are as follow study works, the first, is study of the high-resolution correlation of sequence stratigraphy and sedimentary microfacies. Dongying Formation was divided into three parasequence sets and each parasequence set was divided into different amount of parasequences. FMDF, as the main oil and gas producing bed, can be divided into seven parasequences. Oil and gas are discovered in six parasequences except the seventh. On the basis of study of sedimentary microfacies, the sediments of Dongying Formation are considered deposited mainly in delta front subfacies. The microfacies types of Dongying Formation are sub-water distirbutary channel, sub-water natural bank, inter distributary channel bay, distributary channel mouth dam, and delta front mat sand.Seismic facies analysis and logging-constrained inversion technique were applied by Author for transverse prediction of sandstone reservoir. Having 4 modes of interwell single sandbodies correlation technique, Author have described distribution characteristics of sandbodies, and established geological reservoir model of Gaochentou reservoir.Author presented that the reservoirs characteristic have very strong heterogeneity ,and In the section of sandstone interlayed with mudstone,the folium sandstone interlayed with each other, and the wedge shaped sandbodies pinched out in the mudstone. So the pinch-out up sandstone trap and lenticular sandstone trap are easily formed. They are most small scale overlying pinches out in the place of slope. This article applies the concept of deep basin oil to resolve reasonably the problem of which the oil is below the water in Gaochentou area. Combined with the study of sedimentary facies, reservoir and other aspects, the mechanism and patterns of deep basin oil are studied on the basis of characteristics in Gaochentou area.On the basis of the above study, the mechanism of the oil and gas' migration and accumulation in isotropic sandstone and heterogeneous sandstone are thoroughly analyzed through experiments on physical modeling. Experiments on physical modeling show that the discrepancy between sand layers with different permeability and thickness has important influence on the direction, path, and injection layer of oil's migration. At the beginning of the injection of oil and gas in high permeability sand layer, the pressure is low, the migration resistance is small, and the oil and gas are more easily displacing the water in sand. So it can act as good transformation layer or reservoir. But at the beginning of the injection of oil and gas in sand layer with low permeability, the pressure is high, the migration resistance is big, and the oil and gas are more difficultly displacing the water in sand. So it can only act as bad or worse transformation layer or reservoir. Even if it cannot act as transformation layer or reservoir, it can act as water layer or dry layer. The discrepancy between sand layers on permeability and thickness can make discrepancy in injection of oil and gas between different layers. Consequently it leads to small amount of oil and gas injection in sand layers with low permeability. Ultimately it affects the oil's accumulation and distribution in different sand layers.At Last, combining analysis of the structure and pool forming condition, The thesis has established models of reservoir formation to predict the advantage distribution of oil and gas bearing , and put forward the prospective target It is not only of theoretical signification for explosion and importance, but also has realistic value in guiding the progressive petroleum exploration and exploitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordos Basin is a typical cratonic petroliferous basin with 40 oil-gas bearing bed sets. It is featured as stable multicycle sedimentation, gentle formation, and less structures. The reservoir beds in Upper Paleozoic and Mesozoicare are mainly low density, low permeability, strong lateral change, and strong vertical heterogeneous. The well-known Loess Plateau in the southern area and Maowusu Desert, Kubuqi Desert and Ordos Grasslands in the northern area cover the basin, so seismic data acquisition in this area is very difficult and the data often takes on inadequate precision, strong interference, low signal-noise ratio, and low resolution. Because of the complicated condition of the surface and the underground, it is very difficult to distinguish the thin beds and study the land facies high-resolution lithologic sequence stratigraphy according to routine seismic profile. Therefore, a method, which have clearly physical significance, based on advanced mathematical physics theory and algorithmic and can improve the precision of the detection on the thin sand-peat interbed configurations of land facies, is in demand to put forward.Generalized S Transform (GST) processing method provides a new method of phase space analysis for seismic data. Compared with wavelet transform, both of them have very good localization characteristics; however, directly related to the Fourier spectra, GST has clearer physical significance, moreover, GST adopts a technology to best approach seismic wavelets and transforms the seismic data into time-scale domain, and breaks through the limit of the fixed wavelet in S transform, so GST has extensive adaptability. Based on tracing the development of the ideas and theories from wavelet transform, S transform to GST, we studied how to improve the precision of the detection on the thin stratum by GST.Noise has strong influence on sequence detecting in GST, especially in the low signal-noise ratio data. We studied the distribution rule of colored noise in GST domain, and proposed a technology to distinguish the signal and noise in GST domain. We discussed two types of noises: white noise and red noise, in which noise satisfy statistical autoregression model. For these two model, the noise-signal detection technology based on GST all get good result. It proved that the GST domain noise-signal detection technology could be used to real seismic data, and could effectively avoid noise influence on seismic sequence detecting.On the seismic profile after GST processing, high amplitude energy intensive zone, schollen, strip and lentoid dead zone and disarray zone maybe represent specifically geologic meanings according to given geologic background. Using seismic sequence detection profile and combining other seismic interpretation technologies, we can elaborate depict the shape of palaeo-geomorphology, effectively estimate sand stretch, distinguish sedimentary facies, determine target area, and directly guide oil-gas exploration.In the lateral reservoir prediction in XF oilfield of Ordos Basin, it played very important role in the estimation of sand stretch that the study of palaeo-geomorphology of Triassic System and the partition of inner sequence of the stratum group. According to the high-resolution seismic profile after GST processing, we pointed out that the C8 Member of Yanchang Formation in DZ area and C8 Member in BM area are the same deposit. It provided the foundation for getting 430 million tons predicting reserves and unite building 3 million tons off-take potential.In tackling key problem study for SLG gas-field, according to the high-resolution seismic sequence profile, we determined that the deposit direction of H8 member is approximately N-S or NNE-SS W. Using the seismic sequence profile, combining with layer-level profile, we can interpret the shape of entrenched stream. The sunken lenticle indicates the high-energy stream channel, which has stronger hydropower. By this way we drew out three high-energy stream channels' outline, and determined the target areas for exploitation. Finding high-energy braided river by high-resolution sequence processing is the key technology in SLG area.In ZZ area, we studied the distribution of the main reservoir bed-S23, which is shallow delta thin sand bed, by GST processing. From the seismic sequence profile, we discovered that the schollen thick sand beds are only local distributed, and most of them are distributary channel sand and distributary bar deposit. Then we determined that the S23 sand deposit direction is NW-SE in west, N-S in central and NE-SW in east. The high detecting seismic sequence interpretation profiles have been tested by 14 wells, 2 wells mismatch and the coincidence rate is 85.7%. Based on the profiles we suggested 3 predicted wells, one well (Yu54) completed and the other two is still drilling. The completed on Is coincident with the forecastThe paper testified that GST is a effective technology to get high- resolution seismic sequence profile, compartmentalize deposit microfacies, confirm strike direction of sandstone and make sure of the distribution range of oil-gas bearing sandstone, and is the gordian technique for the exploration of lithologic gas-oil pool in complicated areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores DH99a and DH99b recovered in the central part of Daihai Lake in north-central China were analysed at 2- to 4-crn intervals for grain-size distribution. Grain-size distributions of the lake sediments are inferred to be a proxy for past changes in East Asian monsoon precipitation, such that greater silt-size percentage and higher median grain size reflect increased monsoonal precipitation rates. The grain-size record of Daihai Lake sediments spanning the last ca 11,000 yr indicates that the monsoonal precipitation in the lake region can be divided into three stages: the Early, Middle and Late Holocene. During the Early Holocene before ca 7900 cal yr BP, the median grain size (Md) and the silt-fraction content were relatively low and constant, suggesting relatively low precipitation over the lake region. The Middle Holocene between ca 7900 and 3100 cal yr BP was marked by intensified and highly variable monsoonal precipitation, as indicated by high and variable Md values and silt contents of the lake sediments. During this period, average precipitation rate gradually increased from ca 7900 to 6900 cal yr BP, displayed intense oscillations between ca 6900 and 4400 cal yr BP, and exhibited a decreasing trend while fluctuating from ca 4400 to 3100 cal yr BP Although generally high during the Middle Holocene, both the Md and the silt content assumed distinctly low values at the short intervals of ca 6500-6400, 6000-5900, 5700-5600, 4400-4200 cal yr BP, implying that monsoonal precipitation might have been significantly reduced during these intervals. During the Late Holocene since ca 3100 cal yr BP, grain-size values suggest that precipitation decreased. However, during the Late Holocene, relatively higher Md values and silt contents occurring between ca 1700 to 1000 cal yr BP may denote an intensification of hydrological cycles in the lake area. Changes in the East Asian monsoonal precipitation were not only directly linked with the changing seasonality of solar insolation resulting from progressive changes in the Earth's orbital parameters, but also may have been closely related to variations in the temperature and size of the Western Pacific Warm Pool, in the intensity of the El Nino-Southern Oscillation, and in the path and strength of the North Equatorial Current in the western Pacific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jurong -Hai'an block of lower Yangtz area is one of the important petroleum exploration area among the residual marine basins in the south China. In the history of the basin's evolution, the strongly compressing, napping, folding and deforming during Indosinian to Yanshan epoch resulted in destruction of the early formed petroleum pool. Therefore, the strategy exploration of the secondary hydrocarbon generation and later formation of petroleum pool was brought forward for petroleum exploration and planning in the study area..On the basis of tectonic and sedimentary as well as present-day thermal regime evolution, using vitrinite reflectance and apatite fission track data and the paleo-heat flow based method, the basin's thermal history is reconstructed and hence the strata's temperature history are obtained. In addition, the maturation histories of the main four sets of marine hydrocarbon source rocks in the block are calculated. Furthermore, taking the maturity in the end of early Cretaceous as the original maturity and according to the formulas fitted by the secondary hydrocarbon generation model, the secondary hydrocarbon generation potential of the four sets of source rock is evaluated.The results of thermal history reconstruction show that Jurong-Hai'an block was under an uniform thermal setting during the Caledonian to Hercynian period and characterized by middle heat flow (52~57rnW/ m2). The uniform thermal setting was divided during and after Indosinian to Yanshan epoch. Wuwei area of southern Anhui province was under the high heat flow setting(~90 mW/m2)between 236Ma and 137Ma; Jurong area of southern Jiangsu ,Huangqiao area and Subei basin reached its maximum heat flow of 90,84 and 78-82 mW/m2 at 101Ma,157Ma and 56Ma respectivelyThe study of secondary hydrocarbon generation shows that the upper Paleozoic and Triassic source rocks have excellent secondary hydrocarbon generation potential. Silurian source rock posses some secondary hydrocarbon generation. Cambrian source rock, however, nearly has no secondary hydrocarbon generation. Overall there are no advantages of secondary hydrocarbon generation in the southern area of Jiansu. The intensity of secondary hydrocarbon generation in North Jiangsu basin is definitely better than that in the southern area of Jiangsu.