977 resultados para POLYMORPHOUS SILICON
Resumo:
The interaction of atomic hydrogen with C4H9, Si4H9, and Ge4H9 model clusters has been studied using all-electron and pseudopotential ab initio Hartree-Fock computations with basis sets of increasing flexibility. The results show that the effect of polarization functions is important in order to reproduce the experimental findings, but their inclusion only for the atoms directly involved in the chemisorption bond is usually sufficient. For the systems H-C4H9 and H-Si4H9 all-electron and pseudopotential results are in excellent agreement when basis sets of comparable quality are used. Besides, semiempirical modified-neglect-of-differential-overlap computations provide quite reliable results both for diamond and silicon and have been used to investigate larger model clusters. The results confirm the local nature of chemisorption and further justify the use of minimal X4H9 model clusters.
Resumo:
We report here on a new insight for bio- sensing based on the memristive effect of functional- ized Schottky-barrier memristive silicon nanowire in dry environment. The device concept is discussed. Elec- trical measurements confirm the bio-detection by the narrowing of the memristive Ids − Vds hysteresis upon interaction of antigen with antibody-functionalized nanowire.
Resumo:
Very high concentrations of uranium (up to 4000 ppm) were found in a natural soil in the Dischma valley, an alpine region in the Grisons canton in Switzerland. The goal of this study was to examine the redox state and the nature of uranium binding in the soil matrix in order to understand the accumulation mechanism. Pore water profiles collected from Dischma soil revealed the establishment of anoxic conditions with increasing soil depth. A combination of chemical extraction methods and spectroscopy was applied to characterize the redox state and binding environment of uranium in the soil. Bicarbonate extraction under anoxic conditions released most of the uranium indicating that uranium occurs predominantly in the hexavalent form. Surprisingly, the uranium redox state did not vary greatly as a function of depth. X-ray absorption near edge spectroscopy (XANES), confirmed that uranium was present as a mixture of U(VI) and U(IV) with U(VI) dominating. Sequential extractions of soil samples showed that the dissolution of solid organic matter resulted in the simultaneous release of the majority of the soil uranium content (>95%). Extended X-ray absorption fine structure (EXAFS) spectroscopy also revealed that soil-associated uranium in the soil matrix was mainly octahedrally coordinated, with an average of 1.7 axial (at about 1.76 Å) and 4.6 to 5.3 equatorial oxygen atoms (at about 2.36 Å) indicating the dominance of a uranyl-like (UO22+) structure presumably mixed with some U(IV). An additional EXAFS signal (at about 3.2 Å) identified in some spectra suggested that uranium was also bound (via an oxygen atom) to a light element such as carbon, phosphorus or silicon. Gamma spectrometric measurements of soil profiles failed to identify uranium long-life daughter products in the soil which is an indication that uranium originates elsewhere and was transported to its current location by water. Finally, it was found that the release of uranium from the soil was significantly promoted at very low pH values (pH 2) and increased with increasing pH values (between pH 5 and 9).
Resumo:
En este trabajo se ha estudiado el proceso de gelificación desde un nuevo punto de vista: el seguimiento de la transición solgel mediante la evolución con el tiempo de la distribución de tiempos de relajación, que está directamente relacionada con la distribución de pesos moleculares. La técnica utilizada para la determinación de la distribución de tiempos de relajación es la reología. El proceso de gelificación se ha seguido de forma continua mediante dos ensayos reológicos distintos: (1) ensayos dinámicos u oscilatorios y (2) ensayos de retardo y recuperación, con el objetivo de caracterizar de forma completa la viscoelasticidad del sistema a lo largo de todo el proceso. El estudio ha abarcado todos los estadios de la gelificación: (a) el estadio pre-gel, (b) el propio estadio gel y (c) el estadio post-gel. Los procesos estudiados corresponden a soles poliméricos de titanio y de silicio. Los resultados obtenidos permiten evaluar la influencia de la composición de los soles, así como comparar los dos tipos de soles analizados. Además, permiten describir el tiempo de gelificación desde una nueva perspectiva, basada en la distribución de tiempos de relajación, ya que se observa que este momento corresponde a una distribución de polidispersidad máxima.
Resumo:
The SoftPlotter, a soft photogrammetric software and Silicon Graphics workstation, was used to evaluate the accuracy of soft photogrammetry and identify applications of this technology to highway engineering. A comparative study showed that SoftPlotter compares well with other software such as Socket and Integraph. The PC software TNTMips is inexpensive but needs further development to be comparable to SoftPlotter. The Campus Project showed that soft photogrammetry is accurate for traditional photogrammetric applications. It is also accurate for producing orthophoto and base maps for Geographic Information Systems (GISs). The Highway Project showed that soft photogrammetry is accurate for highway engineering and that the technical staff at the Iowa Department of Transportation (IA DOT) can be easily trained in this new technology. The research demonstrated that soft photogrammetry can be used with low-flight helicopter photography for large-scale mapping in highway engineering. The researchers recommend that research be conducted to test the use of digital cameras instead of the traditional aerial cameras in helicopter photography. Research that examines the use of soft photogrammetry with video logging imagery for inventory and GIS studies in highway maintenance is also recommended. Research is also warranted into the integration of soft photogrammetry with virtual reality, which can be used in three-dimensional designing and visualization of highways and subdivisions in real time. The IA DOT owns one analytical plotter and two analogue plotters. The analytical plotter is used for aerial triangulation, and the analogue plotters are used for plotting. However, neither is capable of producing orthophotos. Therefore, the researchers recommend that the IA DOT purchase soft photogrammetric workstations for orthophoto production, and if and when required, use it for aerial triangulation and plotting. In the future, the analogue plotters may become obsolete. At that time, the researchers recommend that the analogue plotters be phased out and replaced by soft photogrammetric workstations.
Resumo:
Portland Cement Concrete (PCC) pavement has served the State of Iowa well for many years. The oldest Iowa pavement was placed in LeMars in 1904. Beginning in 1931, many miles of PCC pavement were built to "get out of the mud". Many of these early pavements provided good performance without deterioration for more than 50 years. In the late 1950s, Iowa was faced with severe PCC pavement deterioration called D cracking. Research identified the cause of this deterioration as crushed limestone containing a bad pore system. Selective quarrying and ledge control has alleviated this problem. In 1990, cracking deterioration was identified on a three-year-old pavement on US 20 in central Iowa. The coarse aggregate was a crushed limestone with an excellent history of performance in PCC pavement. Examination of cores showed very few cracks through the coarse aggregate particles. The cracks were predominately confined to the matrix. The deterioration was identified as alkali-silica reactivity (ASR) by a consultant. To investigate the cause of the deterioration, the Iowa DOT and Iowa State University jointly purchased a high resolution, low vacuum Hitachi Scanning Electron Microscope (SEM) with an energy dispersion detector. Subsequent evaluation identified no concentration of silica gel (silicon-Si), but did identify substantial amounts of sulfur-S and aluminum-AL (assumed to be ettringite) in the air voids. Some of these voids have cracks radiating from them leading us to conclude that the ettringite filled voids were a center of pressure causing the crack. The ettringite in the voids, after being subjected to sodium chloride (NaCl), initially swells and then dissolves. This low vacuum SEM research of PCC pavement deterioration supports the following conclusions: (1) A low vacuum SEM and an energy dispersion detector are very important for proper evaluation of PCC pavement deterioration; (2) There are instances today where PCC pavement deterioration is mistakenly identified as ASR; (3) Ettringite initially expands when subjected to NaCl; and the ettringite filled voids are a center-of-pressure that cracks the PCC; and (4) The deterioration of some current premature PCC pavement distress locations is caused by factors related to the formation of excessive ettringite.
Resumo:
The formation of silicon particles in rf glow discharges has attracted attention due to their effect as a contaminant during film deposition or etching. However, silicon and silicon alloy powders produced by plasma¿enhanced chemical vapor deposition (PECVD) are promising new materials for sintering ceramics, for making nanoscale filters, or for supporting catalytic surfaces. Common characteristics of these powders are their high purity and the easy control of their stoichiometry through the composition of the precursor gas mixture. Plasma parameters also influence their structure. Nanometric powders of silicon¿carbon alloys exhibiting microstructural properties such as large hydrogen content and high surface/volume ratio have been produced in a PECVD reactor using mixtures of silane and methane at low pressure (-1 Torr) and low frequency square¿wave modulated rf power (13.56 MHz). The a¿Si1¿xCx:H powders were obtained from different precursor gas mixtures, from R=0.05 to R=9, where R=[SiH4]/([SiH4]+[CH4]). The structure of the a¿Si1¿xCx:H powder was analyzed by several techniques. The particles appeared agglomerated, with a wide size distribution between 5 and 100 nm. The silane/methane gas mixture determined the vibrational features of these powders in the infrared. Silicon-hydrogen groups were present for every gas composition, whereas carbon¿hydrogen and silicon¿carbon bonds appeared in methane¿rich mixtures (R-0.6). The thermal desorption of hydrogen revealed two main evolutions at about 375 and 660¿°C that were ascribed to hydrogen bonded to silicon and carbon, respectively. The estimated hydrogen atom concentration in the sample was about 50%.
Resumo:
The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900ºC) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, Rfil(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi2 fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: a initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W5Si3 (which is later replaced by WSi2) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their Rfil(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored Rfil(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed.
Resumo:
Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow.
Resumo:
This paper presents a method to reconstruct 3D surfaces of silicon wafers from 2D images of printed circuits taken with a scanning electron microscope. Our reconstruction method combines the physical model of the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-shading technique with a shape prior. The reconstruction of the surface is formulated as an optimization problem with an objective functional that combines a data-fidelity term on the microscopic image with two prior terms on the surface. The data term models the acquisition system through the irradiance equation characteristic of the microscope; the first prior is a smoothness penalty on the reconstructed surface, and the second prior constrains the shape of the surface to agree with the expected shape of the pattern in the circuit. In order to account for the variability of the manufacturing process, this second prior includes a deformation field that allows a nonlinear elastic deformation between the expected pattern and the reconstructed surface. As a result, the minimization problem has two unknowns, and the reconstruction method provides two outputs: 1) a reconstructed surface and 2) a deformation field. The reconstructed surface is derived from the shading observed in the image and the prior knowledge about the pattern in the circuit, while the deformation field produces a mapping between the expected shape and the reconstructed surface that provides a measure of deviation between the circuit design models and the real manufacturing process.
Resumo:
Monodispersed colloidal crystals based on silica sub-micrometric particles were synthesized using the Stöber-Fink-Bohn process. The control of nucleation and coalescence result in improved characteristics such as high sphericity and very low size dispersion. The resulting silica particles show characteristics suitable for self-assembling across large areas of closely-packed 2D crystal monolayers by an accurate Langmuir-Blodgett deposition process on glass, fused silica and silicon substrates. Due to their special optical properties, colloidal films have potential applications in fields including photonics, electronics, electro-optics, medicine (detectors and sensors), membrane filters and surface devices. The deposited monolayers of silica particles were characterized by means of FESEM, AFM and optical transmittance measurements in order to analyze their specific properties and characteristics. We propose a theoretical calculation for the photonic band gaps in 2D systems using an extrapolation of the photonic behavior of the crystal from 3D to 2D. In this work we show that the methodology used and the conditions in self-assembly processes are decisive for producing high-quality two-dimensional colloidal crystals by the Langmuir-Blodgett technique.
Resumo:
This publication presents one of the first uses of silicon oxide nanoparticles to detect fingermarks. The study is not confined to showing successful detection of fingermarks, but is focused on understanding the mechanisms involved in the fingermark detection process. To gain such an understanding, various chemical groups are grafted onto the nanoparticle surface, and parameters such as the pH of the solutions or zeta potential are varied to study their influence on the detection. An electrostatic interaction has been the generally accepted hypothesis of interaction between nanoparticles and fingermarks, but the results of this research challenge that hypothesis, showing that the interaction is chemically driven. Carboxyl groups grafted onto the nanoparticle surfaces react with amine groups of the fingermark secretion. This formation of amide linkage between carboxyl and amine groups has further been favoured by catalyzing the reaction with a compound of diimide type. The research strategy adopted here ought to be applicable to all detection techniques using nanoparticles. For most of them the nature of the interaction remains poorly understood.
Resumo:
Oxidation of amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition were investigated. Their hydrogen content has a great influence on the oxidation rate at low temperature. When the mass gain is recorded during a heating ramp in dry air, an oxidation process at low temperature is identified with an onset around 250°C. This temperature onset is similar to that of hydrogen desorption. It is shown that the oxygen uptake during this process almost equals the number of hydrogen atoms present in the nanoparticles. To explain this correlation, we propose that oxidation at low temperature is triggered by the process of hydrogen desorption
Resumo:
Mycelia have been recently shown to actively transport polycyclic aromatic hydrocarbons (PAH) in water-unsaturated soil over the range of centimeters, thereby efficiently mobilizing hydrophobic PAH beyond their purely diffusive transport in air and water. However, the question if mycelia-based PAH transport has an effect on PAH biodegradation was so far unsolved. To address this, we developed a laboratory model microcosm mimicking air-water interfaces in soil. Chemical analyses demonstrated transport of the PAH fluorene (FLU) by the mycelial oomycete Pythium ultimum that was grown along the air-water interfaces. Furthermore, degradation of mycelia-transported FLU by the bacterium Burkholderia sartisoli RP037-mChe was indicated. Since this organism expresses eGFP in response to a FLU flux to the cell, it was also as a bacterial reporter of FLU bioavailability in the vicinity of mycelia. Confocal laser scanning microscopy (CLSM) and image analyses revealed a significant increase of eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU. Hence, we could show that physically separated FLU becomes bioavailable to bacteria after transport by mycelia. Experiments with silicon coated glass fibers capturing mycelia-transported FLU guided us to propose a three-step mechanism of passive uptake, active transport and diffusion-driven release. These experiments were also used to evaluate the contributions of these individual steps to the overall mycelial FLU transport rate.