847 resultados para POLYELECTROLYTE FILMS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R-N) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R-N. Water wettability decreased as the proportion of N in the gas phase increased while surface toughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 W negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Polymer films, deposited from acetylene and argon plasma mixtures, were bombarded with 150 keV He+ ions, varying the fluence, Phi, from 10(18) to 10(21) ions/m(2). Molecular structure and optical gap of the samples were investigated by infrared and ultraviolet-visible spectroscopies, respectively. Two-point probe was employed to determine the electrical resistivity while hardness was measured by nanoindentation technique. It was verified modification of the molecular structure and composition of the films. There was loss of H and increment in the concentration of unsaturated carbon bonds with Phi. Optical gap and electrical resistivity decreased while hardness increased with Phi. Interpretation of these results is proposed in terms of chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, it was used a plasma system composed of a cylindrical stainless steel reactor, a radio-frequency (13.56MHz) power source fixed at either 25 W or 70 W, a power source with a negative bias of 10kV and a 100Hz pulse. The system worked at an operational pressure of 80mTorr which consisted of varying concentrations of the monomer HMDSN and gaseous nitrogen in ratios: HMDSN (mTorr)/nitrogen (mTorr) from 70/10 to 20/60 in terms of operational pressure. The structural characterization of the films was done by FTIR spectroscopy. Absorptions were observed between 3500 cm(-1) to 3200 cm(-1), 3000 cm(-1) to 2900 cm(-1), 2500 cm(-1) to 2000 cm(-1), 1500 cm(-1) to 700 cm(-1), corresponding, respectively, to OH radicals, C-H stretching bonds in CH2 and CH3 molecules, C-N bonds, and finally, strain C-H bonds, Si-CH3 and Si-N groups, for both the 70 W and the 25 W. The contact angle for water was approximately 100 degrees and the surface energy is near 25mJ/m(2) which represents a hydrophobic surface, measured by goniometric method. The aging of the film was also analyzed by measuring the contact angle over a period of time. The stabilization was observed after 4 weeks. The refractive index of these materials presents values from 1.73 to 1.65 measured by ultraviolet-visible technique.
Resumo:
Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm(-1)), C-H (3000-2900cm(-1)), C=O (1730-1650cm(-1)), C-O and C-O-C bonds at 1200-1600cm(-1). The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85(0) to 22(0). Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.
Resumo:
This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF(6) plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp(3) hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF(6) plasma treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of film orientation on piezoelectric and ferroelectric properties of bismuth layered compounds deposited on platinum coated silicon substrates was investigated. Piezo-force microscopy was used to probe the local piezoelectric properties of Bi(4)Ti(3)O(12), CaBi(4)Ti(4)O(15) and SrBi(4)Ti(4)O(15) films. Our measurements on individual grains clearly reveal that the local piezoelectric properties are determined by the polarization state of the grain. A piezoelectric coefficient of 65 pm/V was attained after poling in a grain with a polar axis very close to the normal direction. The piezoelectric coefficient and the remanent polarization were larger for a-b axes oriented than for c-axis-oriented films. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
SrBi4Ti4O15 (SBTi) thin films were obtained by the polymeric precursor method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional furnace at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films was investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates configuration, ferroelectric properties of the films were determined with remanent\polarization P-r and a coercive field E-c of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kV/cm for the film thermally treated in conventional furnace, respectively. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films can be a promise material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.