977 resultados para PHYLOGENETIC FOOTPRINTS
Resumo:
A newly described non-long terminal repeat (non-LTR) retrotransposon element was isolated from the genome of the Oriental schistosome, Schistosoma japonicum. At least 1000 partial copies of the element, which was named pido, were dispersed throughout the genome of S. japonicum. As is usual with non-LTR retrotransposons, it is expected that many pido elements will be 5'-truncated. A consensus sequence of 3564 bp of the truncated pido element was assembled from several genomic fragments that contained pido-hybridizing sequences. The sequence encoded part of the first open reading frame (ORF), the entire second ORF and, at its 3'-terminus, a tandemly repetitive, A-rich (TA(6)TA(5)TA(8)) tail, The ORF1 of pido encoded a nucleic acid binding protein and ORF2 encoded a retroviral-like polyprotein that included apurinic/apyrimidinic endonuclease (EN) and reverse transcriptase (RT) domains, in that order. Based on its sequence and structure, and phylogenetic analyses of both the RT and EN domains, pido belongs to the chicken repeat 1 (CR1)-like lineage of elements known from the chicken, turtle, puffer fish, mosquitoes and other taxa. pido shared equal similarity with CRI from chicken, an uncharacterized retrotransposon from Caenorhabditis elegans and SR1 (a non-LTR retrotransposon) from the related blood fluke Schistosoma mansoni; the level of similarity between pido and SR1 indicated that these two schistosome retrotransposons were related but not orthologous. The findings indicate that schistosomes have been colonized by at least two discrete CRI-like elements. Whereas pido did not appear to have a tight target site specificity, at least one copy of pido has inserted into the 3'-untranslated region of a protein-encoding gene (GeriBank AW736757) of as yet unknown identity. mRNA encoding the RT of pido was detected by reverse transcription-polymerase chain reaction in the egg, miracidium. and adult developmental stages of S. japonicum, indicating that the RT domain was transcribed and suggesting that pido was replicating actively and mobile within the S. japonicum genome. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Unlike other members of the genus, Echinococcus granulosus is known to exhibit considerable levels of variation in biology, physiology and molecular genetics. Indeed, some of the taxa regarded as 'genotypes' within E. granulosus might be sufficiently distinct as to merit specific status. Here, complete mitochondrial genomes are presented of 2 genotypes of E. granulosus (G1-sheep-dog strain: G4-horse-dog strain) and of another taeniid cestode, Taenia crassiceps. These genomes are characterized and compared with those of Echinococcus multilocularis and Hymenolepis diminuta. Genomes of all the species are very similar in structure, length and base-composition. Pairwise comparisons of concatenated protein-coding genes indicate that the G1 and G4 genotypes of E. granulosus are almost as distant from each other as each is from a distinct species, E. multilocularis. Sequences for the variable genes atp6 and nad3 were obtained from additional genotypes of E. granulosus, from E. vogeli and E. oligarthrus. Again, pairwise comparisons showed the distinctiveness of the G1 and G4 genotypes. Phylogenetic analyses of concatenated atp6, nad1 (partial) and cox1 (partial) genes from E. multilocularis, E. vogeli, E. oligarthrus, 5 genotypes of E. granulosus, and using T. crassiceps as an outgroup, yielded the same results. We conclude that the sheep-dog and horse-dog strains of E. granulosus should be regarded as distinct at the specific level.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A radiation of five species of giant tortoises (Cylindraspis ) existed in the southwest Indian Ocean, on the Mascarene islands, and another (of Aldabrachelys ) has been postulated on small islands north of Madagascar, from where at least eight nominal species have been named and up to five have been recently recognized. Of 37 specimens of Madagascan and small-island Aldabrachelys investigated by us, 23 yielded significant portions of a 428-base-pair (bp) fragment of mitochondrial (cytochrome b and tRNA-Glu), including type material of seven nominal species (A. arnoldi, A. dussumieri, A. hololissa, A. daudinii, A. sumierei, A. ponderosa and A. gouffei ). These and nearly all the remaining specimens, including 15 additional captive individuals sequenced previously, show little variation. Thirty-three exhibit no differences and the remainder diverge by only 1-4 bp (0.23-0.93%). This contrasts with more widely accepted tortoise species which show much greater inter- and intraspecific differences. The non-Madagascan material examined may therefore only represent a single species and all specimens may come from Aldabra where the common haplotype is known to occur. The present study provides no evidence against the Madagascan origin for Aldabra tortoises suggested by a previous molecular phylogenetic analysis, the direction of marine currents and phylogeography of other reptiles in the area. Ancient mitochondrial DNA from the extinct subfossil A. grandidieri of Madagascar differs at 25 sites (5.8%) from all other Aldabrachelys samples examined here.
Resumo:
The ultrastructure of mature Lagorchestes hirsutus spermatozoa is described for the first time, revealing unusual aspects of sperm structure in macropodid species. The sperm head is ovoid rather than cuneiform, lacks a ventral nuclear groove and has an acrosomal distribution over approximately 85-90% of its dorsal surface. Immediately adjacent to the nuclear membrane the peripheral nucleoplasm in most spermatozoa form an irregular series of distinctive evaginations previously not described in the spermatozoa of any other marsupial. The midpiece is extremely thickened and short, containing no helical network or peripheral plasma membrane specializations. Axonemal structure is unspecialized with no connecting lamellae; dense outer fibres are closely adherent to axonemal doublets. The sperm morphology of this species is highly aberrant in comparison to other macropod taxa and supports the retention of Lagorchestes as a distinctive genus. In light of this new information, skeletal and serological data should be re-evaluated to determine the true taxonomic and phylogenetic position of this species.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapornorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, an 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Axiura. J. Morphol. 258:179-192, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
A new species of Pseudotrypanosoma, P. elphinstonae sp. n., is described which is symbiotic within the hindguts of the rhinotermitid termites Schedorhinotermes secundus and S. intermedius. P. elphinstonae possesses most of the features of the genus: 4 anterior flagella, prominent costa and recurrent flagellum forming an undulating membrane and simple bean-shaped parabasal body. The mastigont complex is of similar composition and arrangement to other trichomonads but the pelto-axostylar complex is greatly simplified being composed of a single layer of microtubules which do not over lap and cannot be distinguished into separate structures. The undulating membrane is much smaller than in related species; the costa is smaller and simpler and there are no microtubular bundles connecting it to the recurrent flagellum. Comparison of the ultrastructure of P. elphinstonae sp. n. with that of P. giganteum demonstrated that P. elphinstonae sp. n. in addition to being much smaller in size had a correspondingly simper ultrastructural organisation lacking several organelles which characterise the latter species.
Resumo:
There has been much argument about the phylogenetic relationships of the four suborders of lice (Insecta: Phthiraptera). Lyal's study of the morphology of lice indicated that chewing/biting lice (Mallophaga) are paraphyletic with respect to sucking lice (Anoplura). To test this hypothesis we inferred the phylogeny of 33 species of lice from small subunit (SSU) rRNA sequences (18S rRNA). Liposcelis sp. from the Liposcelididae (Psocoptera) was used for outgroup reference. Phylogenetic relationships among the four suborders of lice inferred from these sequences were the same as those inferred from morphology. The Amblycera is apparently the sister-group to all other lice whereas the Rhynchophthirina is apparently sister to the Anoplura; these two suborders are sister to the Ischnocera, i.e. (Amblycera (Ischnocera (Anoplura, Rhynchophthirina))). Thus, the Mallophaga (Amblycera, Ischnocera, Rhynchophthirina) is apparently paraphyletic with respect to the Anoplura. Our analyses also provide evidence that: (i) each of the three suborders of lice that are well represented in our study (the Amblycera, Ischnocera, and Anoplura) are monophyletic; (ii) the Boopiidae is monophyletic; (iii) the genera Heterodoxus and Latumcephalum (Boopiidae) are more closely related to one another than either is to the genus Boopia (also Boopiidae); (iv) the Ricinidae and Laemobothridae may be sister-taxa; (v) the Philopteridae may be paraphyletic with respect to the Trichodectidae; (vi) the genera Pediculus and Pthirus are more closely related to each other than either is to the genus Pedicinus ; and (vii) in contrast to published data for mitochondrial genes, the rates of nucleotide substitution in the SSU rRNA of lice are not higher than those of other insects, nor do substitution rates in the suborders differ substantially from one another.
Resumo:
Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals.
Resumo:
We have isolated a cDNA clone from the honeybee brain encoding a dopamine receptor, AmDop2, which is positively coupled to adenylyl cyclase. The transmembrane domains of this receptor are 88% identical to the orthologous Drosophila D2 dopamine receptor, DmDop2, though phylogenetic analysis and sequence homology both indicate that invertebrate and vertebrate D2 receptors are quite distinct. In situ hybridization to mRNA in whole-mount preparations of honeybee brains reveals gene expression in the mushroom bodies, a primary site of associative learning. Furthermore, two anatomically distinct cell types in the mushroom bodies exhibit differential regulation of AmDop2 expression. In all nonreproductive females (worker caste) and reproductive males (drones) the receptor gene is strongly and constitutively expressed in all mushroom body interneurons with small cell bodies. In contrast, the large cell-bodied interneurons exhibit dramatic plasticity of AmDop2 gene expression. In newly emerged worker bees (cell-cleaning specialists) and newly emerged drones, no AmDop2 transcript is observed in the large interneurons whereas this transcript is abundant in these cells in the oldest worker bees (resource foragers) and older drones. Differentiation of the mushroom body interneurons into two distinct classes (i.e., plastic or nonplastic with respect to AmDop2 gene expression) indicates that this receptor contributes to the differential regulation of distinct neural circuits. Moreover, the plasticity of expression observed in the large cells implicates this receptor in the behavioral maturation of the bee.