979 resultados para PATHOGEN PYTHIUM-INSIDIOSUM
Resumo:
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.
Resumo:
PURPOSE OF REVIEW: To review major findings on the T-cell receptor (TCR) repertoire diversity in response to several viral infections based on conventional methods of PCR, cloning and sequencing and to discuss their limitations in light of the recent methodological advances in deep sequencing.¦RECENT FINDINGS: Direct sequencing of TCR expressed by Ag-specific T cells isolated ex vivo has revealed that the TCR repertoire is not as restricted as previously estimated. Furthermore, analyses performed independently of the T-cell clonal hierarchy have brought to light an unexpected diversity. The choice of methods is critical to characterize the complexity of the repertoire. Recent advances in deep sequencing have uncovered the diversity of the TCR repertoire and shown that the size of the repertoire in naive and Ag-experienced memory T cells is three-fold to 15-fold larger than formerly estimated. Interestingly, the TCR complementary determining region 3 sequences are not randomly selected and a certain degree of shared TCR repertoire has been observed between different individuals.¦SUMMARY: Deep sequencing is a major methodological advance allowing more accurate molecular characterization of the TCR repertoire. In the near future, such technologies will further contribute to delineate the complexity of pathogen-specific T-cell response and help defining correlates of a protective immunity.
Resumo:
L-2-Amino-4-methoxy-trans-3-butenoic acid (AMB) is a toxic antimetabolite produced by the opportunistic pathogen Pseudomonas aeruginosa. To evaluate its importance as a potential virulence factor, we tested the host response towards AMB using an Acanthamoeba castellanii cell model. We found that AMB (at concentrations ≥ 0.5 mM) caused amoebal encystment in salt buffer, while inhibiting amoebal growth in rich medium in a dose-dependent manner. However, no difference in amoebal plaque formation was observed on bacterial lawns of wild type and AMB-negative P. aeruginosa strains. We thereby conclude that AMB may eventually act as a virulence factor, but only at relatively high concentrations.
Resumo:
In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.
Resumo:
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.
Resumo:
Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Parasites can cause extensive damage to animal societies in which many related individuals frequently interact. In response, social animals have evolved diverse individual and collective defences. Here, we measured the expression and efficiency of self-grooming and allo-grooming when workers of the ant Formica selysi were contaminated with spores of the fungal entomopathogen Metarhizium anisopliae. The amount of self-grooming increased in the presence of fungal spores, which shows that the ants are able to detect the risk of infection. In contrast, the amount of allo-grooming did not depend on fungal contamination. Workers groomed all nestmate workers that were re-introduced into their groups. The amount of allo-grooming towards noncontaminated individuals was higher when the group had been previously exposed to the pathogen. Allo-grooming decreased the number of fungal spores on the surface of contaminated workers, but did not prevent infection in the conditions tested (high dose of spores and late allo-grooming). The rate of disease transmission to groomers and other nestmates was extremely low. The systematic allo-grooming of all individuals returning to the colony, be they contaminated or not, is probably a simple but robust prophylactic defence preventing the spread of fungal diseases in insect societies.
Resumo:
Inflammasomes are protein complexes that form in response to pathogen-derived or host-derived stress signals. Their activation leads to the production of inflammatory cytokines and promotes a pyrogenic cell death process. The massive release of inflammatory mediators that follows inflammasome activation is a key event in alarming innate immune cells. Growing evidence also highlights the role of inflammasome-dependent cytokines in shaping the adaptive immune response, as exemplified by the capacity of IL-1β to support Th17 responses, or by the finding that IL-18 evokes antigen-independent IFN-γ secretion by memory CD8(+) T cells. A deeper understanding of these mechanisms and on how to manipulate this powerful inflammatory system therefore represents an important step forward in the development of improved vaccine strategies.
Resumo:
Juvenile or adult fish can alter their behaviour and rely on an innate and adaptive immune system to avoid/counteract pathogens, while fish embryos have to depend on egg characteristics and may be partly protected by their developing immune system that is building up from a certain age on. We developed an infection protocol that allows testing the reaction of individual whitefish embryos (Coregonus palaea) to repeated exposures to Pseudomonas fluorescens, an opportunistic bacterial fish pathogen. We used a full-factorial in vitro breeding design to separately test the effects of paternal and maternal contributions to the embryos' susceptibility to different kinds of pathogen exposure. We found that a first non-lethal exposure had immunosuppressive effects: pre-exposed embryos were more susceptible to future challenges with the same pathogen. At intermediate and high levels of pathogen intensity, maternal effects turned out to be crucial for the embryos' tolerance to infection. Paternal (i.e. genetic) effects played a significant role at the strongest level of infection, i.e. the embryos' own genetics already explained some of the variation in embryo susceptibility. Our findings suggest that whitefish embryos are largely protected by maternally transmitted substances, but build up some own innate immunocompetence several days before hatching.
Resumo:
Staphylococcus aureus is a highly successful pathogen responsible of a wide variety of diseases, from minor skin infection to life-threatening sepsis or infective endocarditis, as well as food poisoning and toxic shock syndrome. This heterogeneity of infections and the ability of S. aureus to develop antibiotic-resistance to virtually any available drugs reflect its extraordinary capacity to adapt and survive in a great variety of environments. The pathogenesis of S. aureus infection involves a wide range of cell wall-associated adhesins and extracellular toxins that promote host colonization and invasion. In addition, S. aureus is extremely well equipped with regulatory systems that sense environmental conditions and respond by fine tuning the expression of metabolic and virulence determinants. Surface adhesins referred to MSCRAMMs - for Microbial Surface Component Recognizing Adherence Matrix Molecules - mediate binding to the host extracellular matrix or serum components, including fibrinogen, fibronectin, collagen and elastin, and promote tissue colonization and invasion. Major MSCRAMMs include a family of surface-attached proteins covalently bound to the cell wall peptidoglycan via a conserved LPXTG motif. Genomic analyses indicate that S. aureus contain up to 22 LPXTG surface proteins, which could potentially act individually or in synergy to promote infection. In the first part of this study we determined the range of adherence phenotypes to fibrinogen and fibronectin among 30 carriage isolates of S. aureus and compared it to the adherence phenotypes of 30 infective endocarditis and 30 blood culture isolates. Overall there were great variations in in vitro adherence, but no differences were observed between carriage and infection strains. We further determined the relation between in vitro adherence and in vivo infectivity in a rat model of experimental endocarditis, using 4 isolates that displayed either extremely low or high adherence phenotypes. Unexpectedly, no differences were observed between the in vivo infectivity of isolates that were poorly and highly adherent in vitro. We concluded that the natural variability of in vitro adherence to fibrinogen and fibronectin did not correlate with in vivo infectivity, and thus that pathogenic differences between various strains might only be expressed in in vivo conditions, but not in vitro. Therefore, considering the importance of adhesins expression for infection, direct measurement of those adhesins present on the bacterial surface were made by proteomic approach. 5 In the second series of experiments we assessed the physical presence of the LPXTG species at the staphylococcal surface, as measured at various time points during growth in different culture media. S. aureus Newman was grown in either tryptic soy broth (TSB) or in Roswell Park Memorial Institute (RPMI) culture medium, and samples were removed from early exponential growth phase to late stationary phase. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa) and clumping factor A (ClfA). Peptides of surface proteins were recovered by "trypsin-shaving" of live bacteria, and semi-quantitative proteomic analysis was performed by tandem liquid-chromatography and mass-spectrometry (LC-MS). We also determined in parallel the mRNA expression by microarrays analysis, as well as the phenotypic adherence of the bacteria to fibrinogen in vitro. The surface proteome was highly complex and contained numerous proteins theoretically not belonging to the bacterial envelope, including ribosomal proteins and metabolic enzymes. Sixteen of the 21 known LPXTG species were detected, but were differentially expressed. As expected, 9 known agr-regulated proteins (e.g. including Spa, FnBPA, ClfA, IsdA, IsdB, SasH, SasD, SasG and FmtB) increased up to the late exponential growth phase, and were abrogated in agr-negative mutants. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr negative mutant, while all other LPXTG proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in in vitro fibrinogen adherence tests during late growth (24h), whereas it remained poorly detected by proteomics. Differential expression was also detected in iron-rich TSB versus iron-poor RPMI. Proteins from the iron-regulated surface determinant (isd) system, including IsdA, IsdB and IsdH were barely expressed in iron-rich TSB, whereas they increased their expression by >10 time in iron-poor RPMI. We conclude that semi-quantitative proteomic analysis of specific protein species is feasible in S. aureus and that proteomic, transcriptomic and adherence phenotypes demonstrated differential profiles in S. aureus. Furthermore, peptide signatures released by trypsin shaving suggested differential protein domain exposures in various environments, which might be relevant for antiadhesins vaccines. A comprehensive understanding of the S. aureus physiology should integrate all these approaches.
Resumo:
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.
Resumo:
The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogen.
Resumo:
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.