885 resultados para PARTICLE CREATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]In this paper we describe the procedure followed in the design and recording of a set of videos for teaching and learning ‘English phonetics and phonology’, a second-year undergraduate course at Universidad de Las Palmas de Gran Canaria. The student’s L1 is Spanish. Two different types of technological support were used: screencast and Powerpoint® presentations. The traditional whiteboard together with the lecturer’s presence also contributed both to the integrated learning of certain acoustic/articulatory aspects of the course contents and to the use of specific software for speech analysis. This video production owns the advantage of being an interactive and autonomous tool which favours a continuous learning process on the student’s side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique. A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but inheriting most of the digital logic present in the current DAQ board discussed in this thesis. For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle concentration is a principal factor that affects erosion rate of solid surfaces under particle impact, such as pipe bends in pneumatic conveyors; it is well known that a reduction in the specific erosion rate occurs under high particle concentrations, a phenomenon referred to as the “shielding effect”. The cause of shielding is believed to be increased likelihood of inter-particulate collisions, the high collision probability between incoming and rebounding particles reducing the frequency and the severity of particle impacts on the target surface. In this study, the effects of particle concentration on erosion of a mild steel bend surface have been investigated in detail using three different particulate materials on an industrial scale pneumatic conveying test rig. The materials were studied so that two had the same particle density but very different particle size, whereas two had very similar particle size but very different particle density. Experimental results confirm the shielding effect due to high particle concentration and show that the particle density has a far more significant influence than the particle size, on the magnitude of the shielding effect. A new method of correcting for change in erosivity of the particles in repeated handling, to take this factor out of the data, has been established, and appears to be successful. Moreover, a novel empirical model of the shielding effects has been used, in term of erosion resistance which appears to decrease linearly when the particle concentration decreases. With the model it is possible to find the specific erosion rate when the particle concentration tends to zero, and conversely predict how the specific erosion rate changes at finite values of particle concentration; this is critical to enable component life to be predicted from erosion tester results, as the variation of the shielding effect with concentration is different in these two scenarios. In addition a previously unreported phenomenon has been recorded, of a particulate material whose erosivity has steadily increased during repeated impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Entwicklung und dem Aufbau eines Experiments zur hochpräzisen Bestimmung des g-Faktors gebundener Elektronen in hochgeladenen Ionen. Der g-Faktor eines Teilchens ist eine dimensionslose Konstante, die die Stärke der Wechselwirkung mit einem magnetischen Feld beschreibt. Im Falle eines an ein hochgeladenes Ion gebundenen Elektrons, dient es als einer der genausten Tests der Quantenelektrodynamik gebundener Zustande (BS-QED). Die Messung wird in einem dreifach Penning-Fallen System durchgeführt und basiert auf dem kontinuierlichen Stern-Gerlach-Effekt. Der erste Teil dieser Arbeit gibt den aktuellen Wissensstand über magnetische Momente wieder. Der hier gewählte experimentelle Aufbau wird begründet. Anschließend werden die experimentellen Anforderungen und die verwendeten Messtechniken erläutert. Das Ladungsbrüten der Ionen - einer der wichtigsten Aufgaben dieser Arbeit - ist dargestellt. Seine Realisierung basiert auf einer Feld-Emissions-Spitzen-Anordnung, die die Messung des Wirkungsquerschnitts für Elektronenstoßionisation ermöglicht. Der letzte Teil der Arbeit widmet sich der Entwicklung und dem Aufbau des Penning-Fallen Systems, sowie der Implementierung des Nachweisprozesses. Gegenwärtig ist der Aufbau zur Erzeugung hochgeladener Ionen und der dazugehörigen Messung des g-Faktors abgeschlossen, einschließlich des Steuerprogramms für die erste Datennahme. Die Ionenerzeugung und das Ladungsbrüten werden die nächsten Schritte sein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main targets of the CMS experiment is to search for the Standard Model Higgs boson. The 4-lepton channel (from the Higgs decay h->ZZ->4l, l = e,mu) is one of the most promising. The analysis is based on the identification of two opposite-sign, same-flavor lepton pairs: leptons are required to be isolated and to come from the same primary vertex. The Higgs would be statistically revealed by the presence of a resonance peak in the 4-lepton invariant mass distribution. The 4-lepton analysis at CMS is presented, spanning on its most important aspects: lepton identification, variables of isolation, impact parameter, kinematics, event selection, background control and statistical analysis of results. The search leads to an evidence for a signal presence with a statistical significance of more than four standard deviations. The excess of data, with respect to the background-only predictions, indicates the presence of a new boson, with a mass of about 126 GeV/c2 , decaying to two Z bosons, whose characteristics are compatible with the SM Higgs ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most ocean - atmosphere exchanges take place in polar environments due to the low temperatures which favor the absorption processes of atmospheric gases, in particular CO2. For this reason, the alterations of biogeochemical cycles in these areas can have a strong impact on the global climate. With the aim of contributing to the definition of the mechanisms regulating the biogeochemical fluxes we have analyzed the particles collected in the Ross Sea in different years (ROSSMIZE, BIOSESO 1 and 2, ROAVERRS and ABIOCLEAR projects) in two sites (mooring A and B). So it has been developed a more efficient method to prepare sediment trap samples for the analyses. We have also processed satellite data of sea ice, chlorophyll a and diatoms concentration. At both sites, in each year considered, there was a high seasonal and inter-annual variability of biogeochemical fluxes closely correlated with sea ice cover and primary productivity. The comparison between the samples collected at mooring A and B in 2008 highlighted the main differences between these two sites. Particle fluxes at Mooring A, located in a polynia area, are higher than mooring B ones and they happen about a month before. In the mooring B area it has been possible to correlate the particles fluxes to the ice concentration anomalies and with the atmospheric changes in response to El Niño Southern Oscillations. In 1996 and 1999, years subjected to La Niña, the concentrations of sea ice in this area have been less than in 1998, year subjected to El Niño. Inverse correlation was found for 2005 and 2008. In the mooring A area significant differences in mass and biogenic fluxes during 2005 and 2008 has been recorded. This allowed to underline the high variability of lateral advection processes and to connect them to the physical forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1900, the Yoruba people of South-western Nigeria have put its ethnic history at work in the construction of its identity in Nigeria. The exercise resulted in the creation of ethno-nationalist movements and the practice of ethnic politics, often expressed through violent attacks on the Nigerian State and some ethnic groups in Nigeria. Relying on mythological attachment to its traditions and subjective creation of cultural pride, the people created a sense of history that established a common interest among different Yoruba sub-groups in form of pan-Yoruba interest which forms the basis for the people’s imagination of nation. Through this, historical consciousness and socio-political space in which Yoruba people are located acted as instrumental forces employed by Yoruba political elites, both at colonial and post-colonial periods to demand for increasing access to political and economic resources in Nigeria. In form of nationalism, nationalist movements and ethnic politics continued in South-western Nigeria since 1900, yet without resulting to actual creation of an independent Yoruba State up to 2009. Through ethnographic data, the part played by history, tradition and modernity is examined in this paper. While it is concluded that ethno-nationalist movement and ethnic politics in Yoruba society are constructive agenda dated back to pre-colonial period, it continues to transform both in structure and function. Thus, Yoruba ethno-nationalist movement and ethnic politics is ambiguous, dynamic and complex, to the extent that it remains a challenge to State actions in Nigeria.