921 resultados para PARASITE
Resumo:
Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.
Resumo:
Background and aims Toxoplasmic retinochoroiditis may recur months or years after the primary infection. Rupture of dormant cysts in the retina is the accepted hypothesis to explain recurrence. Here, the authors present evidence supporting the presence of Toxoplasma gondii in the peripheral blood of immunocompetent patients. Methods Direct observation by light microscopy and by immunofluorescence assay was performed, and results were confirmed by PCR amplification of parasite DNA. Results The authors studied 20 patients from Erechim, Brazil, including acute infected patients, patients with recurrent active toxoplasmic retinochoroiditis, patients with old toxoplasmic retinal scars, and patients with circulating IgG antibodies against T gondii and absence of ocular lesions. Blood samples were analysed, and T gondii was found in the blood of acutely and chronically infected patients regardless of toxoplasmic retinochoroiditis. Conclusions The results indicate that the parasite may circulate in the blood of immunocompetent individuals and that parasitaemia could be associated with the reactivation of the ocular disease.
Resumo:
Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.
Resumo:
Background/Aim: Chagas` disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100 beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100 beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process. Methods: IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100 beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis. Results: No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p<0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p<0.01) and NOS (544%, p<0.001). Moreover, the intensity of nitrotyrosine (16%, p<0.01), NOS (38%, p<0.05) and S100 beta (21%, p<0.001) immunoreactivities were also augmented. No IFN-gamma labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.Conclusion: We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100 beta may contribute to NOS activation in the absence of IL-12. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1. Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria. The Journal of Immunology, 2008, 181: 8344-8355.
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Trypanosoma cruzi, the etiologic agent for Chagas` disease, has requirements for several cofactors, one of which is heme. Because this organism is unable to synthesize heme, which serves as a prosthetic group for several heme proteins (including the respiratory chain complexes), it therefore must be acquired from the environment. Considering this deficiency, it is an open question as to how heme A, the essential cofactor for eukaryotic CcO enzymes, is acquired by this parasite. In the present work, we provide evidence for the presence and functionality of genes coding for heme O and heme A synthases, which catalyze the synthesis of heme O and its conversion into heme A, respectively. The functions of these T. cruzi proteins were evaluated using yeast complementation assays, and the mRNA levels of their respective genes were analyzed at the different T. cruzi life stages. It was observed that the amount of mRNA coding for these proteins changes during the parasite life cycle, suggesting that this variation could reflect different respiratory requirements in the different parasite life stages.
Resumo:
In this study, we describe the first survey in Thailand of Trypanosoma theileri, a widespread and prevalent parasite of cattle that is transmitted by tabanid flies. Investigation of 210 bovine blood samples of Thai cattle from six farms by hematocrit centrifuge technique (HCT) revealed 14 samples with trypanosomes morphologically compatible to T. theileri. Additional animals were positive for T. theileri by PCR based on the Cathepsin L-like sequence (TthCATL-PCR) despite negative by HCT, indicating cryptic infections. Results revealed a prevalence of 26 +/- 15% (95% CI) of T. theileri infection. Additionally, 12 samples positive for T. theileri were detected in cattle from other 11 farms. From a total of 30 blood samples positive by HCT and/or PCR from 17 farms, seven were characterized to evaluate the genetic polymorphism of T. theileri through sequence analysis of PCR-amplified CATL DNA sequences. All CATL sequences of T. theileri from Thai cattle clustered with sequences of the previously described phylogenetic lineages TthI and TthII, supporting only two major lineages of T. theileri in cattle around the world. However, 11 of the 29 CATL sequences analyzed showed to be different, disclosing an unexpectedly large polymorphic genetic repertoire, with multiple genotypes of T. theileri not previously described in other countries circulating in Thai cattle. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Resumo:
We describe the epidemiology of malaria in a frontier agricultural settlement in Brazilian Amazonia. We analysed the incidence of slide-confirmed symptomatic infections diagnosed between 2001 and 2006 in a cohort of 531 individuals (2281.53 person-years of follow-up) and parasite prevalence data derived from four cross-sectional surveys. Overall, the incidence rates of Plasmodium vivax and P. falciparaum were 20.6/100 and 6.8/100 person-years at risk, respectively, with a marked decline in the incidence of both species (81.4 and 56.8%, respectively) observed between 2001 and 2006. PCR revealed 5.4-fold more infections than conventional microscopy in population-wide cross-sectional surveys carried out between 2004 and 2006 (average prevalence, 11.3 vs. 2.0%). Only 27.2% of PCR-positive (but 73.3% of slide-positive) individuals had symptoms when enrolled, indicating that asymptomatic carriage of low-grade parasitaemias is a common phenomenon in frontier settlements. A circular cluster comprising 22.3% of the households, all situated in the area of most recent occupation, comprised 69.1% of all malaria infections diagnosed during the follow-up, with malaria incidence decreasing exponentially with distance from the cluster centre. By targeting one-quarter of the households, with selective indoor spraying or other house-protection measures, malaria incidence could be reduced by more than two-thirds in this community. (C) 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
Plasmodium falciparum, the causative agent of human malaria, invades host erythrocytes using several proteins on the surface of the invasive merozoite, which have been proposed as potential vaccine candidates. Members of the multi-gene PfRh family are surface antigens that have been shown to play a central role in directing merozoites to alternative erythrocyte receptors for invasion. Recently, we identified a large structural polymorphism, a 0.58 Kb deletion, in the C-terminal region of the PfRh2b gene, present at a high frequency in parasite populations from Senegal. We hypothesize that this region is a target of humoral immunity. Here, by analyzing 371 P. falciparum isolates we show that this major allele is present at varying frequencies in different populations within Senegal, Africa, and throughout the world. For allelic dimorphisms in the asexual stage antigens, Msp-2 and EBA-175, we find minimal geographic differentiation among parasite populations from Senegal and other African localities, suggesting extensive gene flow among these populations and/or immune-mediated frequency-dependent balancing selection. In contrast, we observe a higher level of inter-population divergence (as measured by F(st)) for the PfRh2b deletion, similar to that observed for SNPs from the sexual stage Pfs45/48 loci, which is postulated to be under directional selection. We confirm that the region containing the PfRh2b polymorphism is a target of humoral immune responses by demonstrating antibody reactivity of endemic sera. Our analysis of inter-population divergence suggests that in contrast to the large allelic dimorphisms in EBA-175 and Msp-2, the presence or absence of the large PfRh2b deletion may not elicit frequency-dependent immune selection, but may be under positive immune selection, having important implications for the development of these proteins as vaccine candidates. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Human capillariasis caused by Capillaria hepatica (syn. Calodium hepaticum) is a rare disease with no more than 40 cases registered around the world. Classically, the disease has severe symptoms that mimic acute hepatitis. Natural reservoirs of C. hepatica are urban rodents (Mus musculus and Rattus novergicus) that harbor their eggs in the liver. After examining the feces of 6 riverine inhabitants (Rio Preto area, 8 degrees 03`S and 62 degrees 53`W to 8 degrees 14`S and 62 degrees 52`W) of the State of Rondonia, Brazil, and identifying C. hepatica eggs in their feces, the authors decided to investigate the real dimension of these findings by looking for two positive signals. Methods: Between June 1(st) and 15(th), 2008, 246 out of 304 individuals were clinically examined. Blood samples were collected, kept under -20 degrees C, and test by the indirect immunofluorescence technique. Results: The first positive signal was the presence of specific antibodies at 1: 150 dilution, which indicates that the person is likely to have been exposed to eggs, most likely non-infective eggs, passing through the food chain or via contaminated food (total prevalence of 34.1%). A second more specific signal was the presence of antibodies at higher titers, thus indicating true infection. Conclusions: The authors concluded that only two subjects were really infected (prevalence of 0.81%); the rest was false-positives that were sensitized after consuming non-embryonated eggs. The present study is the first one carried out in a native Amazonian population and indicates the presence of antibodies against C. hepatica in this population. The results further suggest that the transmission of the parasite occurs by the ingestion of embryonated eggs from human feces and/or carcasses of wild animals. The authors propose a novel mode of transmission, describing the disease as a low pathogenic one, and showing low infectivity.
Resumo:
The human malaria parasite Plasmodium falciparum expresses erythrocyte-surface directed variant antigens which are important virulence factors Many are transcribed from multigene families and presumably their mode of expression is strictly controlled to guarantee immune evasion in the human host. In order to elucidate the dynamics of rif transcription and to investigate if rif switching is comparable to var switching we monitored rif variant gene expression in parasites with different cytoadhesive properties as well as after a number of reinvasions. We found identical transcripts in parasite lines with different adhesive phenotypes suggesting that rif genes do not have a critical role in determining the cytoadhesion specificity of infected erythrocytes. We show for the first time that rif genes may show a conserved mode of transcription, maintaining the previously dominant rif transcript in subsequent reinvasions, but also observed rapid switching at rates up to 45% per generation, much higher than for the var gene family. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have sequenced genes encoding cathepsin L-like (CatL-like) cysteine proteases from isolates of Trypanosoma rangeli from humans, wild mammals and Rhodnius species of Central and South America. Phylogenetic trees of sequences encoding mature CatL-like enzymes of T rangeli and homologous genes from other trypanosomes, Leishmania spp. and bodonids positioned sequences of T rangeli (rangelipain) closest to T cruzi (cruzipain). Phylogenetic tree of kinetoplastids based on sequences of CatL-like was totally congruent with those derived from SSU rRNA and gGAPDH genes. Analysis of sequences from the CatL-like catalytic domains of 17 isolates representative of the overall phylogenetic diversity and geographical range of T rangeli supported all the lineages (A-D) previously defined using ribosomal and spliced leader genes. Comparison of the proteolytic activities of T rangeli isolates revealed heterogeneous banding profiles of cysteine proteases in gelatin gels, with differences even among isolates of the same lineage. CatL-like sequences proved to be excellent targets for diagnosis and genotyping of T rangeli by PCR. Data from CatL-like encoding genes agreed with results from previous studies of kDNA markers, and ribosomal and spliced leader genes, thereby corroborating clonal evolution, independent transmission cycles and the divergence of T rangeli lineages associated with sympatric species of Rhodnius. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0 +/- 49.0 and 147.0 +/- 46.0 mu M, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 mu M limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania. (C) 2009 Elsevier Masson SAS. All rights reserved.