951 resultados para PAIR-INSTABILITY SUPERNOVAE
Resumo:
Osteosarcoma (OS) and Ewing sarcoma (EWS) are the two most frequent primary bone tumors, in which metastases remain the most relevant adverse prognostic factor. Lamin A is the main constituent of the nuclear lamina, with a fundamental role in maintaining the connection between nucleus and cytoskeleton (through LINC complex proteins interactions), and its alterations can be implicated in tumor progression. We investigated how nucleo-cytoskeleton dynamics is influenced by lamin A modulation in OS and EWS, demonstrating that both these cancer models had low levels of lamin A, which are linked to a significantly more marked nuclear misshaping. In our in vitro studies, reduced levels of lamin A promoted migratory abilities in these tumors. Moreover, these findings were corroborated by gene expression analyses on EWS patient samples, showing that LMNA levels were significantly lower in metastatic lesions compared to primary tumors and that patients with low LMNA had a significant worse overall survival. We also found that LMNA expression significantly impaired EWS metastases formation in vivo. We demonstrated that low lamin A expression was linked to a severe mislocalization of LINC complex proteins, thus disrupting nucleo-cytoskeleton interactions, with a corresponding gain in malignant properties, which resulted in increased invasiveness. Lamin A overexpression or its accumulation by a statin-based pharmacological treatment allowed us to reconstitute a functional nucleo-cytoskeleton interplay, which resulted in significant downmodulation of ROCK2 and YAP, two crucial drivers of EWS aggressiveness. Our study demonstrated that lamin A is a favorable mediator of nuclear shape stability in bone sarcomas, and its modulation rescues LINC complex protein localization and regulates mechano-signaling pathways, thus promoting a less aggressive cancer phenotype. We also identified statins, already employed in clinical practice, as a tool capable to increase lamin A levels, and to reconstitute functional nucleo-cytoskeletal dynamics, resulting in reduced cellular migration.
Resumo:
Il quark top è una delle particelle fondamentali del Modello Standard, ed è osservato a LHC nelle collisioni a più elevata energia. In particolare, la coppia top-antitop (tt̄) è prodotta tramite interazione forte da eventi gluone-gluone (gg) oppure collisioni di quark e antiquark (qq̄). I diversi meccanismi di produzione portano ad avere coppie con proprietà diverse: un esempio è lo stato di spin di tt̄, che vicino alla soglia di produzione è maggiormente correlato nel caso di un evento gg. Uno studio che voglia misurare l’entità di tali correlazioni risulta quindi essere significativamente facilitato da un metodo di discriminazione delle coppie risultanti sulla base del loro canale di produzione. Il lavoro qui presentato ha quindi lo scopo di ottenere uno strumento per effettuare tale differenziazione, attraverso l’uso di tecniche di analisi multivariata. Tali metodi sono spesso applicati per separare un segnale da un fondo che ostacola l’analisi, in questo caso rispettivamente gli eventi gg e qq̄. Si dice che si ha a che fare con un problema di classificazione. Si è quindi studiata la prestazione di diversi algoritmi di analisi, prendendo in esame le distribuzioni di numerose variabili associate al processo di produzione di coppie tt̄. Si è poi selezionato il migliore in base all’efficienza di riconoscimento degli eventi di segnale e alla reiezione degli eventi di fondo. Per questo elaborato l’algoritmo più performante è il Boosted Decision Trees, che permette di ottenere da un campione con purezza iniziale 0.81 una purezza finale di 0.92, al costo di un’efficienza ridotta a 0.74.
Resumo:
In the framework of the energy transition, the acquisition of proper knowledge of fundamental aspects characterizing the use of alternative fuels is paramount as well as the development of optimized know-how and technologies. In this sense, the use of hydrogen has been indicated as a promising route for decarbonization at the end-users stage in the energy supply chain. However, the elevated reactivity and the low-density at atmospheric conditions of hydrogen pose new challenges. Among the others, the dilution of hydrogen with carbon dioxide from carbon capture and storage systems represents a possible route. However, the interactions between these species have been poorly studied so far. For these reasons, this thesis, in collaboration between the University of Bologna and Technische Universität Bergakademie of Freiberg in Saxony (Germany), investigates the laminar flame of hydrogen-based premixed gas with the dilution of carbon dioxide. An experimental system, called a heat flux burner, was adopted ad different operating conditions. The presence of the cellularity phenomenon, forming the so-called cellular flame, was observed and analysed. Theoretical and visual methods have allowed for the characterization of the investigated flames, opening new alternatives for sustainable energy production via hydrogen transformation.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.
Resumo:
To determine if magnesium deficiency aggravates the effects of a high-fat diet in growing rats in terms of obesity, lipid profile and insulin resistance. The study population comprised 48 newly weaned male Wistar Hannover rats distributed into four groups according to diet, namely, control group (CT; n = 8), control diet provided ad libitum; pair-feeding control group (PF; n = 16), control diet but in the same controlled amount as animals that received high-fat diets; high-fat diet group (HF; n = 12), and magnesium-deficient high-fat diet group (HFMg(-); n = 12). The parameters investigated were adiposity index, lipid profile, magnesium status, insulin sensitivity and the phosphorylation of proteins involved in the insulin-signaling pathway, i.e. insulin receptor β-subunit, insulin receptor substrate 1 and protein kinase B. The HF and HFMg(-) groups were similar regarding gain in body mass, adiposity index and lipid profile, but were significantly different from the PF group. The HFMg(-) group exhibited alterations in magnesium homeostasis as revealed by the reduction in urinary and bone concentrations of the mineral. No inter-group differences were observed regarding glucose homeostasis. Protein phosphorylation in the insulin-signaling pathway was significantly reduced in the high-fat groups compared with the control groups, demonstrating that the intake of fat-rich diets increased insulin resistance, a syndrome that was aggravated by magnesium deficiency. Under the experimental conditions tested, the intake of a magnesium-deficient high-fat diet led to alterations in the insulin-signaling pathway and, consequently, increased insulin resistance.
Resumo:
Rheumatoid arthritis (RA) is a systemic chronic inflammatory disorder that can compromise the cervical spine in up to 80% of the cases. The most common radiological presentations of cervical involvement are atlantoaxial subluxation (AAS), cranial settling and subaxial subluxation (SAS). We performed a systematic review in the PubMed Database of articles published later 2005 to evaluate the prevalence, progression and risk factors for cervical spine involvement in RA patients. Articles were classified according to their level of evidence. Our literature review reported a wide range in the prevalence of cervical spine disease, probably explained by the different studied populations and disease characteristics. Uncontrolled RA is probably the main risk factor for developing a spinal instability. Adequate treatment with DMARD and BA can prevent development of cervical instabilities but did not avoid progression of a pre-existing injury. MRI is the best radiological method for diagnosis cervical spine involvement. AAS is the most common form of RA. Long term radiological follow-up is necessary to diagnosis patients with late instabilities and monitoring progression of diagnosed injuries.
Resumo:
Basilar invagination (BI) is a congenital craniocervical junction (CCJ) anomaly represented by a prolapsed spine into the skull-base that can result in severe neurological impairment. In this paper, we retrospective evaluate the surgical treatment of 26 patients surgically treated for symptomatic BI. BI was classified according to instability and neural abnormalities findings. Clinical outcome was evaluated using the Nürick grade system. A total of 26 patients were included in this paper. Their age ranged from 15 to 67 years old (mean 38). Of which, 10 patients were male (38%) and 16 (62%) were female. All patients had some degree of tonsillar herniation, with 25 patients treated with foramen magnum decompression. Nine patients required a craniocervical fixation. Six patients had undergone prior surgery and required a new surgical procedure for progression of neurological symptoms associated with new compression or instability. Most of patients with neurological symptoms secondary to brainstem compression had some improvement during the follow-up. There was mortality in this series, 1 month after surgery, associated with a late removal of the tracheal cannula. Management of BI requires can provide improvements in neurological outcomes, but requires analysis of the neural and bony anatomy of the CCJ, as well as occult instability. The complexity and heterogeneous presentation requires attention to occult instability on examination and attention to airway problems secondary to concomitant facial malformations.
Resumo:
We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(TSDW ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature [Formula: see text]. This [Formula: see text] is much lower than the Tc ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower Tc is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe2-xCuxAs2 series. Around the optimal concentration (xopd = 0.11), all samples showed a substantial increase of Tc as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), Tc presented a dome-like shape with maximum Tc ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced Tc ≃ 30 K which is comparable to the maximum Tc's found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.
Resumo:
This article intends to answer the question: what is the best way to evaluate the strength of acids and bases? The meaning of the word strength, the main acid-base theories (ionotropic and electron pair), the neutralization reactions and the thermodynamical formalism are considered. Some cases are presented and discussed. In conclusion, evaluating acid-base strength is dependent on the theory (formalism) as well as on the system and measuring techniques.
Resumo:
High-temperature liquid chromatography (HTLC) is a technique that presents a series of advantages in liquid phase separations, such as: reduced analysis time, reduced pressure drop, reduced asymmetry factors, modified retentions, controlled selectivities, better efficiencies and improved detectivities, as well as permitting green chromatography. The practical limitations that relate to instrumentation and to stationary phase instability are being resolved and this technique is now ready to be applied for routine determinations.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física