925 resultados para Oxygen reduction reaction mechanism
Resumo:
The presence of NO during the regeneration period of a Pt-Ba/Al O Lean NO Trap (LNT) catalyst modifies significantly the evolution of products formed from the reduction of stored nitrates, particularly nitrogen and ammonia. The use of isotope labelling techniques, feeding NO during the storage period and NO during regeneration allows us to propose three different routes for nitrogen formation based on the different masses detected during regeneration, i.e. N (m/e = 28), N N (m/e = 29) and N (m/e = 30). It is proposed that the formation of nitrogen via Route 1 involves the reaction between hydrogen and NO released from the storage component to form NH mainly. Then, ammonia further reacts with NO located downstream to form N . In Route 2, it is postulated that the incoming NO reacts with hydrogen to form NH in the reactor zone where the trap has been already regenerated. This isotopically labelled ammonia travels through the catalyst bed until it reaches the regeneration front where it participates in the reduction of stored nitrates ( NO ) to form N N. The formation of N via Route 3 is believed to occur by the reaction between incoming NO and H . The modification of the hydrogen concentration fed during regeneration affects the relative importance of H or NH as reductants and thus the production of N via Route 1 and N N via Route 2.
Resumo:
Communication of antibiotic resistance among bacteria via small molecules is implicated in transient reduction of bacterial susceptibility to antibiotics, which could lead to therapeutic failures aggravating the problem of antibiotic resistance. Released putrescine from the extremely antibiotic resistant bacterium Burkholderia cenocepacia protects less resistant cells from different species against the antimicrobial peptide polymyxin B (PmB). Exposure of B. cenocepacia to sub-lethal concentrations of PmB and other bactericidal antibiotics induce reactive oxygen species (ROS) production and expression of the oxidative stress response regulator OxyR. We evaluated whether putrescine alleviates antibiotic-induced oxidative stress. The accumulation of intracellular ROS such as superoxide ion and hydrogen peroxide was assessed fluorometrically with dichlorofluorescein diacetate, while the expression of OxyR and putrescine synthesis enzymes was determined in luciferase assays using chromosomal promoter-lux reporter system fusions. We evaluated wild type and isogenic deletion mutant strains with defects in putrescine biosynthesis after exposure to sub-lethal concentrations of PmB and other bactericidal antibiotics. Exogenous putrescine protected against oxidative stress induced by PmB and other antibiotics, whereas reduced putrescine synthesis resulted in increased ROS generation, and a parallel increased sensitivity to PmB. Of the 3 B. cenocepacia putrescine synthesizing enzymes, PmB induced only BCAL2641, an ornithine decarboxylase. This study exposes BCAL2641 as a critical component of the putrescine-mediated communication of antibiotic resistance, and as a plausible target for designing inhibitors that would block the communication of such resistance among different bacteria, ultimately reducing the window of therapeutic failure in treating bacterial infections.
Resumo:
The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C(4)mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species.
Resumo:
Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
Using first principles calculations for O vacancy diffusion on CeO2(111), we locate a surface diffusion mechanism, the two-step O vacancy exchange one, which is more favored than the most common hopping mechanism. By analyzing the results, we identify quantitatively the physical origin of why the two-step exchange mechanism is preferred.
Resumo:
We perform DFT calculations to investigate the redox and formate mechanisms of water-gas-shift (WGS) reaction on Au/CeO2 catalysts. In the redox mechanism, we analyze all the key elementary steps and find that the OH cleavage is the key step. Three possible pathways of OH cleavage are calculated: (1) OHad '' + *'--> H-ad' + O-ad"; (2) H-ad' + OHad '' --> H-2(g) + O-ad '' + *'; and (3) OHad" + OHad '' --> 2O(ad '') + H-2(g) (*': the free adsorption sites on the oxides; ad': adsorption on the metal; ad": adsorption on the oxide, respectively). In the formate mechanism, we identify all the possible pathways for the formation and decomposition of surface formates in the WGS reaction. It is found that there is a shortcoming in the redox and formate mechanisms which is related to surface oxygen reproduction. Four possible pathways for producing surface oxygen are studied, and all the barriers of the four pathways are more than 1 eV. Our results suggest that the processes to reproduce surface oxygen in the reaction circle are not kinetically easy. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Spillover processes (i.e. the migration of ionic species from the support to the catalyst and vice versa) are known to play a very important role in catalysis and electrocatalysis. These spillover processes can be influenced by impurities (pre-existing on the catalyst surface) and by the catalyst morphology that may differ as a result of the differences in catalyst manufacturing processes. This work investigates the influence of impurities present in three commercial platinum (Pt) precursors. The resulting platinum films studied here were supported on yttria-stabilised-zirconia (YSZ). It was found that the three different catalyst films contained a range of impurities (determined by ICP-OES) that appear to affect the oxygen charge transfer reaction as studied by cyclic voltammetry (CV). © 2012 Elsevier B.V.
Resumo:
Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.
Resumo:
The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.
Resumo:
Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.
Resumo:
The study deals with the production of l-phenylflavazoles with chloro, amino, hydroxy, chloromethyl, carboxamido, trichloromethyl, N-pyrrolidyl and N-pyrrolidylmethyl groups substituted at position 3. The interconversions of 3-amino, 3-hydroxy and 3-chlorol- phenylflavazoles were also investigated. Further, an unusual phenylation reaction was found to take place if stored or air-oxidised phenylhydrazine was used as the condensing agent for the formation of flavazoles from quinoxaline-2-carboxaldehyde phenylhydrazones. By this phenylation reaction 1,3-diphenyl, l-p-tolyl-3-phenyl, l-p-chlorophenyl-3-phenyl, l-p-bromophenyl- 3-phenyl and l-phenyl-3-p-tolylflavazoles were prepared. In addition to establishing the structure of the phenylation products, the reaction was shown to take place by a free radical mechanism involving phenyl radicals formed from oxidised phenylhydrazine. Also the oxidation, reduction and bromination reactions of l-phenylflavazole were investigated. The product obtained when a mixture of l-phenylflavazole and sodium borohydride in isopropanol was heated under reflux was shown to be 2-anilinoquinoxaline-3-carboxamide which when refluxed with concentrated hydrochloric acid gave the known 2-anilinoquinoxaline. New procedures were worked out for the oxidative cyclisation reactions of quinoxaline-2carboxaldehyde phenylhydrazones to l-phenylflavazoles in excellent yields using azobenzene as a dehydrogenating agent. These cyclisations were also shown to take place, though in low Yield, if the quinoxaline2- carboxaldehyde phenylhydrazones were heated above their melting points in an atmosphere containing oxygen.
Resumo:
Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect'' during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is in effective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1:400 (at 65 degrees C; corresponding to 3 mu M anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect ( with a composite E-A approximate to 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture.
Resumo:
The reduction of water-insoluble indigo by the recently isolated moderate thermophile, Clostridium isatidis, has been studied with the aim of developing a sustainable technology for industrial indigo reduction. The ability to reduce indigo was not shared with C. aurantibutyricum, C. celatum and C. papyrosolvens, but C. papyrosolvens could reduce indigo carmine (5,5-indigosulfonic acid), a soluble indigo derivative. The supernatant from cultures of C. isatidis, but not from cultures of the other bacteria tested, decreased indigo particle size to one-tenth diameter. Addition of madder powder, anthraquinone-2,6-disulfonic acid, and humic acid all stimulated indigo reduction by C. isatidis. Redox potentials of cultures of C. isatidis were about 100 mV more negative than those of C. aurantibutyricum, C. celatum and C. papyrosolvens, and reached –600 mV versus the SCE in the presence of indigo, but potentials were not consistently affected by the addition of the quinone compounds, which probably act by modifying the surface of the bacteria or indigo particles. It is concluded that C. isatidis can reduce indigo because (1) it produces an extracellular factor that decreases indigo particle size, and (2) it generates a sufficiently reducing potential.