942 resultados para Overtures (String orchestra with piano)
Resumo:
Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a popular research topic for many years, and is still investigated nowadays. The goal of Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of a speech or musical notes. It plays an important role, because it is the key to identify which notes are being played and at what time. Pitch Estimation of real instruments is a very hard task to address. Each instrument has its own physical characteristics, which reflects in different spectral characteristics. Furthermore, the recording conditions can vary from studio to studio and background noises must be considered. This dissertation presents a novel approach to the problem of Pitch Estimation, using Cartesian Genetic Programming (CGP).We take advantage of evolutionary algorithms, in particular CGP, to explore and evolve complex mathematical functions that act as classifiers. These classifiers are used to identify piano notes pitches in an audio signal. To help us with the codification of the problem, we built a highly flexible CGP Toolbox, generic enough to encode different kind of programs. The encoded evolutionary algorithm is the one known as 1 + , and we can choose the value for . The toolbox is very simple to use. Settings such as the mutation probability, number of runs and generations are configurable. The cartesian representation of CGP can take multiple forms and it is able to encode function parameters. It is prepared to handle with different type of fitness functions: minimization of f(x) and maximization of f(x) and has a useful system of callbacks. We trained 61 classifiers corresponding to 61 piano notes. A training set of audio signals was used for each of the classifiers: half were signals with the same pitch as the classifier (true positive signals) and the other half were signals with different pitches (true negative signals). F-measure was used for the fitness function. Signals with the same pitch of the classifier that were correctly identified by the classifier, count as a true positives. Signals with the same pitch of the classifier that were not correctly identified by the classifier, count as a false negatives. Signals with different pitch of the classifier that were not identified by the classifier, count as a true negatives. Signals with different pitch of the classifier that were identified by the classifier, count as a false positives. Our first approach was to evolve classifiers for identifying artifical signals, created by mathematical functions: sine, sawtooth and square waves. Our function set is basically composed by filtering operations on vectors and by arithmetic operations with constants and vectors. All the classifiers correctly identified true positive signals and did not identify true negative signals. We then moved to real audio recordings. For testing the classifiers, we picked different audio signals from the ones used during the training phase. For a first approach, the obtained results were very promising, but could be improved. We have made slight changes to our approach and the number of false positives reduced 33%, compared to the first approach. We then applied the evolved classifiers to polyphonic audio signals, and the results indicate that our approach is a good starting point for addressing the problem of Pitch Estimation.
Resumo:
This writing forms part of a portfolio of works which gathers together notations and recordings made between 2012 and 2015. The writing divides into four chapters. The first chapter undertakes an examination of abstraction. From the proposition obtained therein, that it is possible to extend within abstraction beyond a correspondence between its terms and concrete manifestations, I ask in what way abstraction may be considered to function therefrom. The second chapter performs an analysis of radical music notations from the nineteenth, twentieth, and twenty-first centuries. The central analysis identifies what is essentially an evolution of what I call ''figuration'' throughout three non-chronological phases of Christian Wolff's notations. The chapter closes by questioning what form of understanding might yet be pursued in respect of this work given (a) its nature, and (b) the nature of our inquiry. The third chapter reflects on some of the philosophical problematics raised in the preceding chapters, at the same time as it prepares for those that follow in the final chapter. The final chapter is a record of the development of my thought appertaining to my compositional work. It sets out two case studies (prepared piano and postcard notations) before proceeding to a selected set of commentaries. Finally, the notion of the functioning of written and acoustical ''marks'' developed in the preceding commentaries is generalised as I develop an aesthetics of scriptural experience.
Resumo:
String searching within a large corpus of data is an important component of digital forensic (DF) analysis techniques such as file carving. The continuing increase in capacity of consumer storage devices requires corresponding im-provements to the performance of string searching techniques. As string search-ing is a trivially-parallelisable problem, GPGPU approaches are a natural fit – but previous studies have found that local storage presents an insurmountable performance bottleneck. We show that this need not be the case with modern hardware, and demonstrate substantial performance improvements from the use of single and multiple GPUs when searching for strings within a typical forensic disk image.
Resumo:
Concert Program
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
Women with a disability continue to experience social oppression and domestic violence as a consequence of gender and disability dimensions. Current explanations of domestic violence and disability inadequately explain several features that lead women who have a disability to experience violent situations. This article incorporates both disability and material feminist theory as an alternative explanation to the dominant approaches (psychological and sociological traditions) of conceptualising domestic violence. This paper is informed by a study which was concerned with examining the nature and perceptions of violence against women with a physical impairment. The emerging analytical framework integrating material feminist interpretations and disability theory provided a basis for exploring gender and disability dimensions. Insight was also provided by the women who identified as having a disability in the study and who explained domestic violence in terms of a gendered and disabling experience. The article argues that material feminist interpretations and disability theory, with their emphasis on gender relations, disablism and poverty, should be used as an alternative tool for exploring the nature and consequences of violence against women with a disability.