930 resultados para Over fifty years


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control surface effectiveness is an important parameter for any aeroplane. For a hypersonic aircraft, though the power required to operate the flaps is determined by low speed flying conditions, it is imperative to know the effect of flaps at hypersonic speeds. Hence, studies have been done on this topic by aerodynamicists for over 40 years. In spite of this, only a limited data is available in the literature on this subject. This paper discusses the experimental study of the effect of sweep on the aerodynamic characteristics of thin slab delta wings with flaps at hypersonic speeds. For the purpose of this investigation, a novel special thin six-component balance, which has a thickness of 4mm and can be housed inside wings with 8mm thickness, has been designed. The wings had a sweep of 76degrees, 70degrees and 65degrees, t/c of 0.053 and flaps with 12% of wing area and 12% of wing chord. Testing were done at Mach 8.2, Re number of 2.13 x 10(6) (based on chord), from alpha = -12degrees to 12degrees and flap angle of 20degrees, 30degrees and 40degrees. Separation lengths, measured from Schlieren pictures, clearly show that there is 'no appreciable' effect of sweep on them. Also, using a simple local flow field calculation, the separation has been identified to be transitional in nature. These features of separation reflect in the force data. Because of the small separation length, the flaps (inspite of their small size) were very effective in generating additional C-N, C-M and C-l, which increased with increase in flap angle. In general, the C-N, C-M and X-CP were unaffected by sweep for symmetric flap deflection at positive incidences and asymmetric flap case, For symmetric flap case at negative incidences, only C-N was not influenced by the sweep but C-M decreased and X-CP moved upstream as the sweep is decreased, The wing with lower sweep produces higher CA and lower (L/D)(max) for both symmetric and asymmetric flaps. The rolling moment and adverse yaw increased with decrease in sweep for asymmetric flap deflection. Newtonian theory is shown to be incapable of predicting the effect of sweep on C-l, C-n and on the incremental values of C-N, C-M and C-A. In conclusion, it can be said that a small flap is generally adequate for hypersonic aeroplanes provided they operate at altitudes where transitional and turbulent separation can be expected to occur. This would make the flaps effective and thus enable ample control authority.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Starting from the early decades of the twentieth century, evolutionary biology began to acquire mathematical overtones. This took place via the development of a set of models in which the Darwinian picture of evolution was shown to be consistent with the laws of heredity discovered by Mendel. The models, which came to be elaborated over the years, define a field of study known as population genetics. Population genetics is generally looked upon as an essential component of modern evolutionary theory. This article deals with a famous dispute between J. B. S. Haldane, one of the founders of population genetics, and Ernst Mayr, a major contributor to the way we understand evolution. The philosophical undercurrents of the dispute remain relevant today. Mayr and Haldane agreed that genetics provided a broad explanatory framework for explaining how evolution took place but differed over the relevance of the mathematical models that sought to underpin that framework. The dispute began with a fundamental issue raised by Mayr in 1959: in terms of understanding evolution, did population genetics contribute anything beyond the obvious? Haldane's response came just before his death in 1964. It contained a spirited defense, not just of population genetics, but also of the motivations that lie behind mathematical modelling in biology. While the difference of opinion persisted and was not glossed over, the two continued to maintain cordial personal relations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For over 300 years, the monsoon has been viewed as a gigantic land-sea breeze. It is shown in this paper that satellite and conventional observations support an alternative hypothesis, which considers the monsoon as a manifestation of seasonal migration of the intertropical convergence zone (ITCZ). With the focus on the Indian monsoon, the mean seasonal pattern is described, and why it is difficult to simulate it is discussed. Some facets of the intraseasonal variation, such as active-weak cycles; break monsoon; and a special feature of intraseasonal variation over the region, namely, poleward propagations of the ITCZ at intervals of 2-6 weeks, are considered. Vertical moist stability is shown to be a key parameter in the variation of monthly convection over ocean and land as well as poleward propagations. Special features of the Bay of Bengal and the monsoon brought out by observations during a national observational experiment in 1999 are briefly described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like L-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several studies on molecular profiling of oligodendrogliomas (OGs) in adults have shown a distinctive genetic pattern characterized by combined deletions of chromosome arms 1 p and 19q, O6-methylguanine-methyltransferase (MGMT) methylation, and isocitrate dehydrogenase 1 (IDH1) mutation, which have potential diagnostic, prognostic, and even therapeutic relevance. OGs in pediatric and young adult patients are rare and have been poorly characterized on a molecular and biological basis, and it remains uncertain whether markers with prognostic significance in adults also have predictive value in these patients. Fourteen cases of OGs in young patients (age, <= 25 years) who received a diagnosis over 7 years were selected (7 pediatric patients age <= 18 years and 7 young adults aged 19-25 years). The cases were evaluated for 1p/19q status, MGMT promoter methylation, p53 mutation, and IDH1 mutation. None of the pediatric cases showed 1p/19q deletion. In young adults, combined 1p/19q loss was observed in 57% and isolated 1p loss in 14% of cases. The majority of cases in both subgroups (71% in each) harbored MGMT gene promoter methylation. TP53 and IDH1 mutations were not seen in any of the cases in both the groups. To our knowledge, this is the first study to show that molecular profile of OGs in pediatric and young adult patients is distinct. Further large-scale studies are required to identify additional clinically relevant genetic alterations in this group of patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper analyses the efficiency and productivity growth of the Electronic Sector of India in the liberalization era since 1991. The study gives an insight into the process of the growth of one of the most upcoming sector of this decade. This sector has experienced a vast structural change along with the changing economic structures in India after liberalisation. With the opening up of this sector to foreign market and incoming of multinational companies, the environment has become highly competitive. The law that operates is that of Darwin’s ‘Survival of the fittest’. Existing industries experience a continuous threat of exit due to entrance of new potential entrants. Thus, it becomes inevitable for the existing industries in this sector to improve productivity growth for their survival. It is thus important to analyze how the industries in this sector have performed over the years and what are the factors that have contributed to the overall output growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discoverymethods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies.Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discovery methods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies. Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The van der Waals and Platteuw (vdVVP) theory has been successfully used to model the thermodynamics of gas hydrates. However, earlier studies have shown that this could be due to the presence of a large number of adjustable parameters whose values are obtained through regression with experimental data. To test this assertion, we carry out a systematic and rigorous study of the performance of various models of vdWP theory that have been proposed over the years. The hydrate phase equilibrium data used for this study is obtained from Monte Carlo molecular simulations of methane hydrates. The parameters of the vdWP theory are regressed from this equilibrium data and compared with their true values obtained directly from simulations. This comparison reveals that (i) methane-water interactions beyond the first cage and methane-methane interactions make a significant contribution to the partition function and thus cannot be neglected, (ii) the rigorous Monte Carlo integration should be used to evaluate the Langmuir constant instead of the spherical smoothed cell approximation, (iii) the parameter values describing the methane-water interactions cannot be correctly regressed from the equilibrium data using the vdVVP theory in its present form, (iv) the regressed empty hydrate property values closely match their true values irrespective of the level of rigor in the theory, and (v) the flexibility of the water lattice forming the hydrate phase needs to be incorporated in the vdWP theory. Since methane is among the simplest of hydrate forming molecules, the conclusions from this study should also hold true for more complicated hydrate guest molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the years, crystal engineering has transformed into a mature and multidisciplinary subject. New understanding, challenges, and opportunities have emerged in the design of complex structures and structure-property evaluation. Revolutionary pathways adopted by many leaders have shaped and directed this subject. In this short essay to celebrate the 60th birthday of Prof. Gautam R. Desiraju, we, his current research group members, contemplate the development of some of the topics explored by our group in the context of the overall subject. These topics, though not entirely new, are of significant interest to the crystal engineering community.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The predictability of a chaotic series is limited to a few future time steps due to its sensitivity to initial conditions and the exponential divergence of the trajectories. Over the years, streamflow has been considered as a stochastic system in many approaches. In this study, the chaotic nature of daily streamflow is investigated using autocorrelation function, Fourier spectrum, correlation dimension method (Grassberger-Procaccia algorithm) and false nearest neighbor method. Embedding dimensions of 6-7 obtained indicates the possible presence of low-dimensional chaotic behavior. The predictability of the system is estimated by calculating the system’s Lyapunov exponent. A positive maximum Lyapunov exponent of 0.167 indicates that the system is chaotic and unstable with a maximum predictability of only 6 days. These results give a positive indication towards considering streamflow as a low dimensional chaotic system than as a stochastic system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceramic/Porcelain insulators are widely used in power transmission lines to provide mechanical support for High voltage conductors in addition to withstand electrical stresses. As a result of lightning, switching or temporary over voltages that could initiate flashover under worst weather conditions, and to operate within interference limits. Given that the useful life in service of the individual insulator elements making up the insulator strings is hard to predict, they must be verified periodically to ensure that adequate line reliability is maintained at all times. Over the years utilities have adopted few methods to detect defective discs in a string, subsequently replacement of the faulty discs are being carried out for smooth operation. But, if the insulator is found to be defective in a string at some location that may not create any changes in the field configuration, there is no need to replace to avoid manpower and cost of replacement. Due to deficiency of electric field data for the existing string configuration, utilities are forced to replace the discs which may not be essentially required. Hence, effort is made in the present work to simulate the potential and electric field along the normal and with faults induced discs in a string up to 765 kV system voltages using Surface Charge Simulation Method (SCSM). A comparison is made between simulated results, experimental and field data and it was found that the computed results are quite acceptable and useful.