922 resultados para Order of magnitude
Resumo:
The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^
Resumo:
Fire debris evidence is submitted to crime laboratories to determine if an ignitable liquid (IL) accelerant was used to commit arson. An ignitable liquid residue (ILR) may be difficult to analyze due to interferences, complex matrices, degradation, and low concentrations of analytes. Debris from an explosion and pre-detonated explosive compounds are not trivial to detect and identify due to sampling difficulties, complex matrices, and extremely low amounts (nanogram) of material present. The focus of this research is improving the sampling and detection of ILR and explosives through enhanced sensitivity, selectivity, and field portable instrumentation. Solid Phase MicroExtraction (SPME) enhanced the extraction of ILR by two orders of magnitude over conventional activated charcoal strip (ACS) extraction. Gas chromatography tandem mass spectrometry (GC/MS/MS) improved sensitivity of ILR by one order of magnitude and explosives by two orders of magnitude compared to gas chromatography mass spectrometry (GC/MS). Improvements in sensitivity were attributed to enhanced selectivity. An interface joining SPME to ion mobility spectrometry (IMS) has been constructed and evaluated to improve field detection of hidden explosives. The SPME-IMS interface improved the detection of volatile and semi-volatile explosive compounds and successfully adapted the IMS from a particle sampler into a vapor sampler. ^
Resumo:
Establishing an association between the scent a perpetrator left at a crime scene to the odor of the suspect of that crime is the basis for the use of human scent identification evidence in a court of law. Law enforcement agencies gather evidence through the collection of scent from the objects that a perpetrator may have handled during the execution of the criminal act. The collected scent evidence is consequently presented to the canines for identification line-up procedures with the apprehended suspects. Presently, canine scent identification is admitted as expert witness testimony, however, the accurate behavior of the dogs and the scent collection methods used are often challenged by the court system. The primary focus of this research project entailed an evaluation of contact and non-contact scent collection techniques with an emphasis on the optimization of collection materials of different fiber chemistries to evaluate the chemical odor profiles obtained using varying environment conditions to provide a better scientific understanding of human scent as a discriminative tool in the identification of suspects. The collection of hand odor from female and male subjects through both contact and non-contact sampling approaches yielded new insights into the types of VOCs collected when different materials are utilized, which had never been instrumentally performed. Furthermore, the collected scent mass was shown to be obtained in the highest amounts for both gender hand odor samples on cotton sorbent materials. Compared to non-contact sampling, the contact sampling methods yielded a higher number of volatiles, an enhancement of up to 3 times, as well as a higher scent mass than non-contact methods by more than an order of magnitude. The evaluation of the STU-100 as a non-contact methodology highlighted strong instrumental drawbacks that need to be targeted for enhanced scientific validation of current field practices. These results demonstrated that an individual's human scent components vary considerably depending on the method used to collect scent from the same body region. This study demonstrated the importance of collection medium selection as well as the collection method employed in providing a reproducible human scent sample that can be used to differentiate individuals.
Resumo:
We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.
Resumo:
Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate-regulating properties of forests. Using both tower-based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane-damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models.
Resumo:
We studied the role of photochemical and microbial processes in contributing to the transformation of dissolved organic matter (DOM) derived from various plants that dominate the Florida Everglades. Plant-derived DOM leachate samples were exposed to photochemical and microbial degradation and the optical, chemical, and molecular weight characteristics measured over time. Optical parameters such as the synchronous fluorescence intensity between 270 and 290 nm (Fnpeak I), a strong indicator of protein and/or polyphenol content, decreased exponentially in all plant leachate samples, with microbial decay constants ranging from 21.0 d21 for seagrass to 20.11 d21 for mangrove (half-life [t1/2] 5 0.7–6.3 d). Similar decreases in polyphenol content and dissolved organic carbon (DOC) concentration also occurred but were generally an order of magnitude lower or did not change significantly over time. The initial molecular weight composition was reflected in the rate of Fnpeak I decay and suggests that plantderived DOM with a large proportion of high molecular weight structures, such as seagrass derived DOM, contain high concentrations of easily microbially degradable proteinaceous components. For samples exposed to extended simulated solar radiation, polyphenol and Fnpeak I photochemical decay constants were on average 20.7 d21 (t1/2 1.0 d). Our data suggest that polyphenol structures of plant-derived DOM are particularly sensitive to photolysis, whereas high molecular weight protein-like structures are degraded primarily through physical–chemical and microbial processes. Furthermore, microbial and physical processes initiated the formation of recalcitrant, highly colored high molecular weight polymeric structures in mangrove-derived DOM. Thus, partial, biogeochemical transformation of plant-derived DOM from coastal areas is rapid and is likely to influence carbon and nutrient cycling, especially in areas dominated by seagrass and mangrove forests.
Resumo:
Atomic beam experiments are limited by intensity. Intensity limitations are specially critical in the measurements of metastable atoms, since their relative population is several order of magnitude smaller than the beam population. This thesis provides a method for increasing the intensity of metastable argon and neon beams effusing from a hot cathode, glow discharge by use of a longitudinal magnetic field. The argon and neon metastable atom intensities have been measured for a range of discharge pressure, voltage, and current for a magnetic field strengths from 0 to 31 mT. For both argon and neon, the metastable atom beam intensity rises to a maximum value about one order of magnitude above the zero field case. A qualitative discussion of the theory of this phenomenon is also presented.
Resumo:
Ferromanganese micronodules have been found on Georges Bank, off the U.S. northeast coast, distributed throughout the surficial sediments within an area about 125 km long and at least 12 km wide. These coarse, sand-sized concretions have precipitated from metal-rich interstitial waters and contain many of the textural and structural features common to other neritic nodules. Most of the nodules have accreted around detrital grains, and X-ray powder diffraction analyses indicate the presence of geothite and vernadite ( delta -MnO sub(2)) in the ferromanganese layers. Chemical analyses of the micronodules, when compared with similar data on deep-sea manganese nodules, reveal lower Mn/Fe ratios, significantly higher concentrations of V and As, comparable values of Mo, and an order of magnitude less of Co, Ni, Ce and most other, metals.
Resumo:
The Hakon Mosby Mud Volcano is a highly active methane seep hosting different chemosynthetic communities such as thiotrophic bacterial mats and siboglinid tubeworm assemblages. This study focuses on in situ measurements of methane fluxes to and from these different habitats, in comparison to benthic methane and oxygen consumption rates. By quantifying in situ oxygen, methane, and sulfide fluxes in different habitats, a spatial budget covering areas of 10-1000 -m diameter was established. The range of dissolved methane efflux (770-2 mmol m-2 d-1) from the center to the outer rim was associated with a decrease in temperature gradients from 46°C to < 1°C m-1, indicating that spatial variations in fluid flow control the distribution of benthic habitats and activities. Accordingly, total oxygen uptake (TOU) varied between the different habitats by one order of magnitude from 15 mmol m-2 d-1 to 161 mmol m-2 d-1. High fluid flow rates appeared to suppress benthic activities by limiting the availability of electron acceptors. Accordingly, the highest TOU was associated with the lowest fluid flow and methane efflux. This was most likely due to the aerobic oxidation of methane, which may be more relevant as a sink for methane as previously considered in submarine ecosystems.
Resumo:
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to 650 mmol L**-1 at 150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at 60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (dD-CH4 = -170.8 per mil (SMOW), d13C-CH4 = -61.0 per mil (V-PDB), d13C-C2H6 = -44.0 per mil (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 x 10**6 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.
Resumo:
We demonstrate the possibility to use a fractional order of poling period of nonlinear crystal waveguides for tunable second harmonic generation. This approach allows one to extend wavelength coverage in the visible spectral range by frequency doubling in a single crystal waveguide.
Resumo:
Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands
Resumo:
Natural IgM (nIgM) is constitutively present in the serum, where it aids in the early control of viral and bacterial expansions. nIgM also plays a significant role in the prevention of autoimmune disease by promoting the clearance of cellular debris. However, the cells that maintain high titers of nIgM in the circulation had not yet been identified. Several studies have linked serum nIgM with the presence of fetal-lineage B cells, and others have detected IgM secretion directly by B1a cells in various tissues. Nevertheless, a substantial contribution of undifferentiated B1 cells to nIgM titers is doubtful, as the ability to produce large quantities of antibody (Ab) is a function of the phenotype and morphology of differentiated plasma cells (PCs). No direct evidence exists to support the claim that a B1-cell population directly produces the bulk of circulating nIgM. The source of nIgM thus remained uncertain and unstudied.
In the first part of this study, I identified the primary source of nIgM. Using enzyme-linked immunosorbent spot (ELISPOT) assay, I determined that the majority of IgM Ab-secreting cells (ASCs) in naïve mice reside in the bone marrow (BM). Flow cytometric analysis of BM cells stained for intracellular IgM revealed that nIgM ASCs express IgM and the PC marker CD138 on their surface, but not the B1a cell marker CD5. By spinning these cells onto slides and staining them, following isolation by fluorescence-activated cell sorting (FACS), I found that they exhibit the typical morphological characteristics of terminally differentiated PCs. Transfer experiments demonstrated that BM nIgM PCs arise from a progenitor in the peritoneal cavity (PerC), but not isolated PerC B1a, B1b, or B2 cells. Immunoglobulin (Ig) gene sequence analysis and examination of B1-8i mice, which carry an Ig knockin that prohibits fetal B-cell development, indicated that nIgM PCs differentiate from fetal-lineage B cells. BrdU uptake experiments showed that the nIgM ASC compartment contains a substantial fraction of long-lived plasma cells (LLPCs). Finally, I demonstrated that nIgM PCs occupy a survival niche distinct from that used by IgG PCs.
In the second part of this dissertation, I characterized the unique survival niche of nIgM LLPCs, which maintain constitutive high titers of nIgM in the serum. By using genetically deficient or Ab-depleted mice, I found that neither T cells, type 2 innate lymphoid cells, nor mast cells, the three major hematopoietic producers of IL-5, were required for nIgM PC survival in the BM. However, IgM PCs associate strongly with IL-5-expressing BM stromal cells, which support their survival in vitro when stimulated. In vivo neutralization of IL-5 revealed that, like individual survival factors for IgG PCs, IL-5 is not the sole supporter of IgM PCs, but is likely one of several redundant molecules that together ensure uninterrupted signaling. Thus, the long-lived nIgM PC niche is not composed of hematopoietic sources of IL-5, but a stromal cell microenvironment that provides multiple redundant survival signals.
In the final part of my study, I identified and characterized the precursor of nIgM PCs, which I found in the first project to be resident in the PerC, but not a B1a, B1b, or B2 cell. By transferring PerC cells sorted based on expression of CD19, CD5, and CD11b, I found that only the CD19+CD5+CD11b- population contained cells capable of differentiating into nIgM PCs. Transfer of decreasing numbers of unfractionated PerC cells into Rag1 knockouts revealed an order-of-magnitude drop in the rate of serum IgM reconstitution between stochastically sampled pools of 106 and 3x105 PerC cells, suggesting that the CD19+CD5+CD11b- compartment comprises two cell types, and that interaction between the two necessary for nIgM-PC differentiation. By transferring neonatal liver, I determined that the early hematopoietic environment is required for nIgM PC precursors to develop. Using mice carrying a mutation that disturbs cKit expression, I also found that cKit appears to be required at a critical point near birth for the proper development of nIgM PC precursors.
The collective results of these studies demonstrate that nIgM is the product of BM-resident PCs, which differentiate from a PerC B cell precursor distinct from B1a cells, and survive long-term in a unique survival niche created by stromal cells. My work creates a new paradigm by which to understand nIgM, B1 cell, and PC biology.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
Recent advances in nanotechnology have led to the application of nanoparticles in a wide variety of fields. In the field of nanomedicine, there is great emphasis on combining diagnostic and therapeutic modalities into a single nanoparticle construct (theranostics). In particular, anisotropic nanoparticles have shown great potential for surface-enhanced Raman scattering (SERS) detection due to their unique optical properties. Gold nanostars are a type of anisotropic nanoparticle with one of the highest SERS enhancement factors in a non-aggregated state. By utilizing the distinct characteristics of gold nanostars, new plasmonic materials for diagnostics, therapy, and sensing can be synthesized. The work described herein is divided into two main themes. The first half presents a novel, theranostic nanoplatform that can be used for both SERS detection and photodynamic therapy (PDT). The second half involves the rational design of silver-coated gold nanostars for increasing SERS signal intensity and improving reproducibility and quantification in SERS measurements.
The theranostic nanoplatforms consist of Raman-labeled gold nanostars coated with a silica shell. Photosensitizer molecules for PDT can be loaded into the silica matrix, while retaining the SERS signal of the gold nanostar core. SERS detection and PDT are performed at different wavelengths, so there is no interference between the diagnostic and therapeutic modalities. Singlet oxygen generation (a measure of PDT effectiveness) was demonstrated from the drug-loaded nanocomposites. In vitro testing with breast cancer cells showed that the nanoplatform could be successfully used for PDT. When further conjugating the nanoplatform with a cell-penetrating peptide (CPP), efficacy of both SERS detection and PDT is enhanced.
The rational design of plasmonic nanoparticles for SERS sensing involved the synthesis of silver-coated gold nanostars. Investigation of the silver coating process revealed that preservation of the gold nanostar tips was necessary to achieve the increased SERS intensity. At the optimal amount of silver coating, the SERS intensity is increased by over an order of magnitude. It was determined that a majority of the increased SERS signal can be attributed to reducing the inner filter effect, as the silver coating process moves the extinction of the particles far away from the laser excitation line. To improve reproducibility and quantitative SERS detection, an internal standard was incorporated into the particles. By embedding a small-molecule dye between the gold and silver surfaces, SERS signal was obtained both from the internal dye and external analyte on the particle surface. By normalizing the external analyte signal to the internal reference signal, reproducibility and quantitative analysis are improved in a variety of experimental conditions.