886 resultados para Optimal test set
Resumo:
Objectives: To explore whether people's organ donation consent decisions occur via a reasoned and/or social reaction pathway. --------- Design: We examined prospectively students' and community members' decisions to register consent on a donor register and discuss organ donation wishes with family. --------- Method: Participants completed items assessing theory of planned behaviour (TPB; attitude, subjective norm, perceived behavioural control (PBC)), prototype/willingness model (PWM; donor prototype favourability/similarity, past behaviour), and proposed additional influences (moral norm, self-identity, recipient prototypes) for registering (N=339) and discussing (N=315) intentions/willingness. Participants self-reported their registering (N=177) and discussing (N=166) behaviour 1 month later. The utility of the (1) TPB, (2) PWM, (3) augmented TPB with PWM, and (4) augmented TPB with PWM and extensions was tested using structural equation modelling for registering and discussing intentions/willingness, and logistic regression for behaviour. --------- Results: While the TPB proved a more parsimonious model, fit indices suggested that the other proposed models offered viable options, explaining greater variance in communication intentions/willingness. The TPB, augmented TPB with PWM, and extended augmented TPB with PWM best explained registering and discussing decisions. The proposed and revised PWM also proved an adequate fit for discussing decisions. Respondents with stronger intentions (and PBC for registering) had a higher likelihood of registering and discussing. --------- Conclusions: People's decisions to communicate donation wishes may be better explained via a reasoned pathway (especially for registering); however, discussing involves more reactive elements. The role of moral norm, self-identity, and prototypes as influences predicting communication decisions were highlighted also.
Resumo:
Study Design: Biomechanical testing of vertebral body screw pullout resistance with relevance to top screw pullout in endoscopic anterior scoliosis constructs. Objectives: To analyse the effect of screw positioning and angulation on pullout resistance of vertebral body screws, where the pullout takes place along a curved path as occurs in anterior scoliosis constructs. Summary of Background Data: Top screw pullout is a significant clinical problem in endoscopic anterior scoliosis surgery, with rates of up to 18% reported in the literature. Methods: A custom designed biomechanical test rig was used to perform pullout tests of Medtronic anterior vertebral screws where the pullout occurred along an arc of known radius. Using synthetic bone blocks, a range of pullout radii and screw angulations were tested, in order to determine an ‘optimal’ configuration. The optimal configuration was then compared with standard screw positioning using a series of tests on ovine vertebrae (n=29). Results: Screw angulation has a small but significant effect on pullout resistance, with maximum strength being achieved at 10 degree cephalad angulation. Combining 10 degree cephalad angulation with maximal spacing between the top two screws (maximum pullout radius) increased the pullout resistance by 88% compared to ‘standard’ screw positioning (screws inserted perpendicular to rod at mid-body height). Conclusions: The positioning of the top screw in anterior scoliosis constructs can significantly alter its pullout resistance.
Resumo:
In this paper, the optimal allocation and sizing of distributed generators (DGs) in a distribution system is studied. To achieve this goal, an optimization problem should be solved in which the main objective is to minimize the DGs cost and to maximise the reliability simultaneously. The active power balance between loads and DGs during the isolation time is used as a constraint. Another point considered in this process is the load shedding. It means that if the summation of DGs active power in a zone, isolated by the sectionalizers because of a fault, is less than the total active power of loads located in that zone, the program start shedding the loads in one-by-one using the priority rule still the active power balance is satisfied. This assumption decreases the reliability index, SAIDI, compared with the case loads in a zone are shed when total DGs power is less than the total load power. To validate the proposed method, a 17-bus distribution system is employed and the results are analysed.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
This thesis addresses computational challenges arising from Bayesian analysis of complex real-world problems. Many of the models and algorithms designed for such analysis are ‘hybrid’ in nature, in that they are a composition of components for which their individual properties may be easily described but the performance of the model or algorithm as a whole is less well understood. The aim of this research project is to after a better understanding of the performance of hybrid models and algorithms. The goal of this thesis is to analyse the computational aspects of hybrid models and hybrid algorithms in the Bayesian context. The first objective of the research focuses on computational aspects of hybrid models, notably a continuous finite mixture of t-distributions. In the mixture model, an inference of interest is the number of components, as this may relate to both the quality of model fit to data and the computational workload. The analysis of t-mixtures using Markov chain Monte Carlo (MCMC) is described and the model is compared to the Normal case based on the goodness of fit. Through simulation studies, it is demonstrated that the t-mixture model can be more flexible and more parsimonious in terms of number of components, particularly for skewed and heavytailed data. The study also reveals important computational issues associated with the use of t-mixtures, which have not been adequately considered in the literature. The second objective of the research focuses on computational aspects of hybrid algorithms for Bayesian analysis. Two approaches will be considered: a formal comparison of the performance of a range of hybrid algorithms and a theoretical investigation of the performance of one of these algorithms in high dimensions. For the first approach, the delayed rejection algorithm, the pinball sampler, the Metropolis adjusted Langevin algorithm, and the hybrid version of the population Monte Carlo (PMC) algorithm are selected as a set of examples of hybrid algorithms. Statistical literature shows how statistical efficiency is often the only criteria for an efficient algorithm. In this thesis the algorithms are also considered and compared from a more practical perspective. This extends to the study of how individual algorithms contribute to the overall efficiency of hybrid algorithms, and highlights weaknesses that may be introduced by the combination process of these components in a single algorithm. The second approach to considering computational aspects of hybrid algorithms involves an investigation of the performance of the PMC in high dimensions. It is well known that as a model becomes more complex, computation may become increasingly difficult in real time. In particular the importance sampling based algorithms, including the PMC, are known to be unstable in high dimensions. This thesis examines the PMC algorithm in a simplified setting, a single step of the general sampling, and explores a fundamental problem that occurs in applying importance sampling to a high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of the estimate under conditions on the importance function. Additionally, the exponential growth of the asymptotic variance with the dimension is demonstrated and we illustrates that the optimal covariance matrix for the importance function can be estimated in a special case.
Resumo:
In this thesis, the issue of incorporating uncertainty for environmental modelling informed by imagery is explored by considering uncertainty in deterministic modelling, measurement uncertainty and uncertainty in image composition. Incorporating uncertainty in deterministic modelling is extended for use with imagery using the Bayesian melding approach. In the application presented, slope steepness is shown to be the main contributor to total uncertainty in the Revised Universal Soil Loss Equation. A spatial sampling procedure is also proposed to assist in implementing Bayesian melding given the increased data size with models informed by imagery. Measurement error models are another approach to incorporating uncertainty when data is informed by imagery. These models for measurement uncertainty, considered in a Bayesian conditional independence framework, are applied to ecological data generated from imagery. The models are shown to be appropriate and useful in certain situations. Measurement uncertainty is also considered in the context of change detection when two images are not co-registered. An approach for detecting change in two successive images is proposed that is not affected by registration. The procedure uses the Kolmogorov-Smirnov test on homogeneous segments of an image to detect change, with the homogeneous segments determined using a Bayesian mixture model of pixel values. Using the mixture model to segment an image also allows for uncertainty in the composition of an image. This thesis concludes by comparing several different Bayesian image segmentation approaches that allow for uncertainty regarding the allocation of pixels to different ground components. Each segmentation approach is applied to a data set of chlorophyll values and shown to have different benefits and drawbacks depending on the aims of the analysis.
Resumo:
There is substantial evidence that Specialist Breast Nurses (SBNs) make an important contribution to improved outcomes for women with breast cancer, by providing information and support and promoting continuity of care. However, a recent study has identified significant variation in how the role functions across individual nurses and settings, which is likely to contribute to varied outcomes for women with breast cancer. The project reported in this paper illustrates how a set of competency standards for SBNs were developed by the National Breast Cancer Centre. The competency standards were developed through a review of published literature and consultation with key stakeholders. The resulting SBN Competency Standards reflect the core domains and elements of SBN practice seen as integral to achieving optimal outcomes for women with breast cancer. This project identifies the SBN as a registered nurse who applies advanced knowledge of the health needs, preferences and circumstances of women with breast cancer to optimise the individual's health and well-being at various phases across the continuum of care, including diagnosis, treatment, rehabilitation, follow-up and palliative care. The five core domains of practice identified are: Supportive care; Collaborative care; Coordinated care; Information provision and education; and Clinical leadership. A variety of education programs are currently available for nurses who wish to learn about breast cancer nursing. The majority of stakeholders consulted in this project agreed that a Graduate Diploma level of education is required at minimum in order for an SBN to develop the minimum level of competence required to perform the role. The evidence supports the view that as an advanced role, nurses practising as SBNs require high-quality programs of sufficient depth and scope to achieve the required level of competence
Resumo:
Building for a sustainable environment requires sustainable infrastructure assets. Infrastructure capacity management is the process of ensuring optimal provision of such infrastructure assets. Effectiveness in this process will enable the infrastructure asset owners and its stakeholders to receive full value on their investment. Business research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With limited access to resources, the challenge for infrastructure organisations is to identify and develop core capabilities to enable infrastructure capacity management. This chapter explores the concept of capability and identifies the core capability needed in infrastructure capacity management. Through a case study of the Port of Brisbane, this chapter shows that infrastructure organisations must develop their intelligence gathering capability to effectively manage the capacity of their infrastructure assets.
Resumo:
Controlling free-ranging livestock requires low-stress cues to alter animal behaviour. Recently modulated sound and electric shock were demonstrated to be effective in controlling free-ranging cattle. In this study the behaviour of 60, 300 kg Belmont Red heifers were observed for behavioural changes when presented cues designed to impede their movement through an alley. The heifers were given an overnight drylot shrink off feed but not drinking water prior to being tested. Individual cattle were allowed to move down a 6.5 m wide alley towards a pen of peers and feed located 71 m from their point of release. Each animal was allowed to move through the alley unimpeded five times to establish a basal behavioural pattern. Animals were then randomly assigned to treatments consisting of sound plus shock, vibration plus shock, a visual cue plus shock, shock by itself and a control. The time each animal required to reach the pen of peers and feed was recorded. If the animal was prevented from reaching the pen of peers and feed by not penetrating through the cue barrier at set points along the alley for at least 60 sec the test was stopped and the animal was returned to peers located behind the release pen. Cues and shock were manually applied from a laptop while animals were observed from a 3.5 m tower located outside the alley. Electric shock, sound, vibration and Global Position System (GPS) hardware were housed in a neck collar. Results and implications will be discussed.
Resumo:
Visual servoing has been a viable method of robot manipulator control for more than a decade. Initial developments involved positionbased visual servoing (PBVS), in which the control signal exists in Cartesian space. The younger method, image-based visual servoing (IBVS), has seen considerable development in recent years. PBVS and IBVS offer tradeoffs in performance, and neither can solve all tasks that may confront a robot. In response to these issues, several methods have been devised that partition the control scheme, allowing some motions to be performed in the manner of a PBVS system, while the remaining motions are performed using an IBVS approach. To date, there has been little research that explores the relative strengths and weaknesses of these methods. In this paper we present such an evaluation. We have chosen three recent visual servo approaches for evaluation in addition to the traditional PBVS and IBVS approaches. We posit a set of performance metrics that measure quantitatively the performance of a visual servo controller for a specific task. We then evaluate each of the candidate visual servo methods for four canonical tasks with simulations and with experiments in a robotic work cell.
Resumo:
Objective: The Brief Michigan Alcoholism Screening Test (bMAST) is a 10-item test derived from the 25-item Michigan Alcoholism Screening Test (MAST). It is widely used in the assessment of alcohol dependence. In the absence of previous validation studies, the principal aim of this study was to assess the validity and reliability of the bMAST as a measure of the severity of problem drinking. Method: There were 6,594 patients (4,854 men, 1,740 women) who had been referred for alcohol-use disorders to a hospital alcohol and drug service who voluntarily participated in this study. Results: An exploratory factor analysis defined a two-factor solution, consisting of Perception of Current Drinking and Drinking Consequences factors. Structural equation modeling confirmed that the fit of a nine-item, two-factor model was superior to the original one-factor model. Concurrent validity was assessed through simultaneous administration of the Alcohol Use Disorders Identification Test (AUDIT) and associations with alcohol consumption and clinically assessed features of alcohol dependence. The two-factor bMAST model showed moderate correlations with the AUDIT. The two-factor bMAST and AUDIT were similarly associated with quantity of alcohol consumption and clinically assessed dependence severity features. No differences were observed between the existing weighted scoring system and the proposed simple scoring system. Conclusions: In this study, both the existing bMAST total score and the two-factor model identified were as effective as the AUDIT in assessing problem drinking severity. There are additional advantages of employing the two-factor bMAST in the assessment and treatment planning of patients seeking treatment for alcohol-use disorders. (J. Stud. Alcohol Drugs 68: 771-779,2007)
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
In this paper, the optimal design of an active flow control device; Shock Control Bump (SCB) on suction and pressure sides of transonic aerofoil to reduce transonic total drag is investigated. Two optimisation test cases are conducted using different advanced Evolutionary Algorithms (EAs); the first optimiser is the Hierarchical Asynchronous Parallel Evolutionary Algorithm (HAPMOEA) based on canonical Evolutionary Strategies (ES). The second optimiser is the HAPMOEA is hybridised with one of well-known Game Strategies; Nash-Game. Numerical results show that SCB significantly reduces the drag by 30% when compared to the baseline design. In addition, the use of a Nash-Game strategy as a pre-conditioner of global control saves computational cost up to 90% when compared to the first optimiser HAPMOEA.
Resumo:
Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.
Resumo:
Introduction Ovine models are widely used in orthopaedic research. To better understand the impact of orthopaedic procedures computer simulations are necessary. 3D finite element (FE) models of bones allow implant designs to be investigated mechanically, thereby reducing mechanical testing. Hypothesis We present the development and validation of an ovine tibia FE model for use in the analysis of tibia fracture fixation plates. Material & Methods Mechanical testing of the tibia consisted of an offset 3-pt bend test with three repetitions of loading to 350N and return to 50N. Tri-axial stacked strain gauges were applied to the anterior and posterior surfaces of the bone and two rigid bodies – consisting of eight infrared active markers, were attached to the ends of the tibia. Positional measurements were taken with a FARO arm 3D digitiser. The FE model was constructed with both geometry and material properties derived from CT images of the bone. The elasticity-density relationship used for material property determination was validated separately using mechanical testing. This model was then transformed to the same coordinate system as the in vitro mechanical test and loads applied. Results Comparison between the mechanical testing and the FE model showed good correlation in surface strains (difference: anterior 2.3%, posterior 3.2%). Discussion & Conclusion This method of model creation provides a simple method for generating subject specific FE models from CT scans. The use of the CT data set for both the geometry and the material properties ensures a more accurate representation of the specific bone. This is reflected in the similarity of the surface strain results.