826 resultados para Optics in computing
Resumo:
The rapid growth in the number of online services leads to an increasing number of different digital identities each user needs to manage. As a result, many people feel overloaded with credentials, which in turn negatively impact their ability to manage them securely. Passwords are perhaps the most common type of credential used today. To avoid the tedious task of remembering difficult passwords, users often behave less securely by using low entropy and weak passwords. Weak passwords and bad password habits represent security threats to online services. Some solutions have been developed to eliminate the need for users to create and manage passwords. A typical solution is based on giving the user a hardware token that generates one-time-passwords, i.e. passwords for single session or transaction usage. Unfortunately, most of these solutions do not satisfy scalability and/or usability requirements, or they are simply insecure. In this paper, we propose a scalable OTP solution using mobile phones and based on trusted computing technology that combines enhanced usability with strong security.
Resumo:
We propose a digital rights management approach for sharing electronic health records in a health research facility and argue advantages of the approach. We also give an outline of the system under development and our implementation of the security features and discuss challenges that we faced and future directions.
Resumo:
At the centre of this research is an ethnographic study that saw the researcher embedded within the fabric of inner city life to better understand what characteristics of user activity and interaction could be enhanced by technology. The initial research indicated that the experience of traversing the city after dark unified an otherwise divergent user group through a shared concern for personal safety. Managing this fear and danger represented an important user need. We found that mobile social networking systems are not only integral for bringing people together, they can help in the process of users safely dispersing as well. We conclude, however, that at a time when the average iPhone staggers under the weight of a plethora of apps that do everything from acting as a carpenter’s level to a pregnancy predictor, we consider the potential for the functionality of a personal safety device to be embodied within a stand alone artifact.
Resumo:
Most infrastructure project developments are complex in nature, particularly in the planning phase. During this stage, many vague alternatives are tabled - from the strategic to operational level. Human judgement and decision making are characterised by biases, errors and the use of heuristics. These factors are intangible and hard to measure because they are subjective and qualitative in nature. The problem with human judgement becomes more complex when a group of people are involved. The variety of different stakeholders may cause conflict due to differences in personal judgements. Hence, the available alternatives increase the complexities of the decision making process. Therefore, it is desirable to find ways of enhancing the efficiency of decision making to avoid misunderstandings and conflict within organisations. As a result, numerous attempts have been made to solve problems in this area by leveraging technologies such as decision support systems. However, most construction project management decision support systems only concentrate on model development and neglect fundamentals of computing such as requirement engineering, data communication, data management and human centred computing. Thus, decision support systems are complicated and are less efficient in supporting the decision making of project team members. It is desirable for decision support systems to be simpler, to provide a better collaborative platform, to allow for efficient data manipulation, and to adequately reflect user needs. In this chapter, a framework for a more desirable decision support system environment is presented. Some key issues related to decision support system implementation are also described.
Resumo:
In April 2007, the Australian Learning and Teaching Council (ALTC)commissioned a study to examine the diverse approaches to ePortfolio use by students in Australian universities. The goals were to consider the scope, penetration and reasons for use of ePortfolios, and to examine the issues associated with their implementation in higher education. One of the central research activities in the project was a national audit which sought to establish a picture of current and emerging ePortfolio activities in Australian academic institutions. The data collection activities took place in late 2007 and the findings were presented and discussed in the final project report, published in October 2008. In 2010, the idea of a ‘follow up survey’ was developed. The resulting supplementary research activity was undertaken to update the data collected by the AeP project team in late 2007. The plan behind this ‘postscript to AeP’ project was to refresh the picture of ePortfolio practice in Australia by collecting new data to identify and map the use of ePortfolios in adult learning across the higher education, vocational education and training (VET) and the adult community education (ACE) sectors. The supplementary project has been referred to as the ‘AeP PS survey’.
Resumo:
Wireless Multi-media Sensor Networks (WMSNs) have become increasingly popular in recent years, driven in part by the increasing commoditization of small, low-cost CMOS sensors. As such, the challenge of automatically calibrating these types of cameras nodes has become an important research problem, especially for the case when a large quantity of these type of devices are deployed. This paper presents a method for automatically calibrating a wireless camera node with the ability to rotate around one axis. The method involves capturing images as the camera is rotated and computing the homographies between the images. The camera parameters, including focal length, principal point and the angle and axis of rotation can then recovered from two or more homographies. The homography computation algorithm is designed to deal with the limited resources of the wireless sensor and to minimize energy con- sumption. In this paper, a modified RANdom SAmple Consensus (RANSAC) algorithm is proposed to effectively increase the efficiency and reliability of the calibration procedure.
Resumo:
Thomas Young (1773-1829) carried out major pioneering work in many different subjects. In 1800 he gave the Bakerian Lecture of the Royal Society on the topic of the “mechanism of the eye”: this was published in the following year (Young, 1801). Young used his own design of optometer to measure refraction and accommodation, and discovered his own astigmatism. He considered the different possible origins of accommodation and confirmed that it was due to change in shape of the lens rather than to change in shape of the cornea or an increase in axial length. However, the paper also dealt with many other aspects of visual and ophthalmic optics, such as biometric parameters, peripheral refraction, longitudinal chromatic aberration, depth-of-focus and instrument myopia. These aspects of the paper have previously received little attention. We now give detailed consideration to these and other less-familiar features of Young’s work and conclude that his studies remain relevant to many of the topics which currently engage visual scientists.
Resumo:
The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their behaviour to reduce the environmental impacts of their consumption. These technologies tend to be single-resource focused (e.g. on electricity consumption only) and their functionality defined by persons other than end-users (e.g. electricity utilities). This paper presents initial findings of end-users' experiences with a multi-resource feedback technology, within the context of sustainable housing. It proposes that an understanding of user context, supply chain management and market diffusion issues are important design considerations that contribute to technology 'success'.
Resumo:
The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.
Resumo:
Software used by architectural and industrial designers – has moved from becoming a tool for drafting, towards use in verification, simulation, project management and project sharing remotely. In more advanced models, parameters for the designed object can be adjusted so a family of variations can be produced rapidly. With advances in computer aided design technology, numerous design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to both leverage specialized design knowledge from various discipline domains (known as expert knowledge systems) and support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques to record and respond to a designer’s own way of working and design history. It is expected that this will lead to results that impact on future work on design support systems-(ergonomics and interface) as well as implicit constraint and problem definition for problems that are difficult to quantify.
Resumo:
Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.
Resumo:
The Tamborine Mt area is a popular residential and tourist area in the Gold Coast hinterland, SE Qld. The 15km2 area occurs on elevated remnant Tertiary Basalts of the Beechmont Group, which comprise a number of mappable flow units originally derived from the Tweed volcanic centre to the south. The older Albert Basalt (Tertiary), which underlies the Beechmont Basalt at the southern end of the investigation area, is thought to be derived from the Focal Peak volcanic centre to the south west. The Basalts contain a locally significant ‘un-declared’ groundwater resource, which is utilised by the Tamborine Mt community for: • domestic purposes to supplement rainwater tank supplies, • commercial scale horticulture and • commercial export off-Mountain for bottled water. There is no reticulated water supply, and all waste water is treated on-site through domestic scale WTPs. Rainforest and other riparian ecosystems that attract residents and tourist dollars to the area, are also reliant on the groundwater that discharges to springs and surface streams on and around the plateau. Issues regarding a lack of compiled groundwater information, groundwater contamination, and groundwater sustainability are being investigated by QUT, utilising funding provided by the Federal Government’s ‘Caring for our Country’ programme through SEQ Catchments Ltd. The objectives of the two year project, which started in April 2009, are to: • Characterise the nature and condition of groundwater / surface water systems in the Tamborine Mountain area in terms of the issues being raised; • Engage and build capacity within the community to source local knowledge, encourage participation, raise awareness and improve understanding of the impacts of land and water use; • Develop a stand-alone 3D Visualisation model for dissemination into the community and use as a communication tool.
Resumo:
Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.
Resumo:
Parallel computing is currently used in many engineering problems. However, because of limitations in curriculum design, it is not always possible to offer students specific formal teaching in this topic. Furthermore, parallel machines are still too expensive for many institutions. The latest microprocessors, such as Intel’s Pentium III and IV, embody single instruction multiple-data (SIMD) type parallel features, which makes them a viable solution for introducing parallel computing concepts to students. Final year projects have been initiated utilizing SSE (streaming SIMD extensions) features and it has been observed that students can easily learn parallel programming concepts after going through some programming exercises. They can now experiment with parallel algorithms on their own PCs at home. Keywords
Resumo:
There is a need for educational frameworks for computer ethics education. This discussion paper presents an approach to developing students’ moral sensitivity, an awareness of morally relevant issues, in project-based learning (PjBL). The proposed approach is based on a study of IT professionals’ levels of awareness of ethics. These levels are labelled My world, The corporate world, A shared world, The client’s world and The wider world. We give recommendations for how instructors may stimulate students’ thinking with the levels and how the levels may be taken into account in managing a project course and in an IS department. Limitations of the recommendations are assessed and issues for discussion are raised.