837 resultados para Operating system kernels
Resumo:
The reliability of Critical Infrastructure is considered to be a fundamental expectation of modern societies. These large-scale socio-technical systems have always, due to their complex nature, been faced with threats challenging their ongoing functioning. However, increasing uncertainty in addition to the trend of infrastructure fragmentation has made reliable service provision not only a key organisational goal, but a major continuity challenge: especially given the highly interdependent network conditions that exist both regionally and globally. The notion of resilience as an adaptive capacity supporting infrastructure reliability under conditions of uncertainty and change has emerged as a critical capacity for systems of infrastructure and the organisations responsible for their reliable management. This study explores infrastructure reliability through the lens of resilience from an organisation and system perspective using two recognised resilience-enhancing management practices, High Reliability Theory (HRT) and Business Continuity Management (BCM) to better understand how this phenomenon manifests within a partially fragmented (corporatised) critical infrastructure industry – The Queensland Electricity Industry. The methodological approach involved a single case study design (industry) with embedded sub-units of analysis (organisations), utilising in-depth interviews and document analysis to illicit findings. Derived from detailed assessment of BCM and Reliability-Enhancing characteristics, findings suggest that the industry as a whole exhibits resilient functioning, however this was found to manifest at different levels across the industry and in different combinations. Whilst there were distinct differences in respect to resilient capabilities at the organisational level, differences were less marked at a systems (industry) level, with many common understandings carried over from the pre-corporatised operating environment. These Heritage Factors were central to understanding the systems level cohesion noted in the work. The findings of this study are intended to contribute to a body of knowledge encompassing resilience and high reliability in critical infrastructure industries. The research also has value from a practical perspective, as it suggests a range of opportunities to enhance resilient functioning under increasingly interdependent, networked conditions.
Resumo:
This thesis discusses various aspects of the integrity monitoring of GPS applied to civil aircraft navigation in different phases of flight. These flight phases include en route, terminal, non-precision approach and precision approach. The thesis includes four major topics: probability problem of GPS navigation service, risk analysis of aircraft precision approach and landing, theoretical analysis of Receiver Autonomous Integrity Monitoring (RAIM) techniques and RAIM availability, and GPS integrity monitoring at a ground reference station. Particular attention is paid to the mathematical aspects of the GPS integrity monitoring system. The research has been built upon the stringent integrity requirements defined by civil aviation community, and concentrates on the capability and performance investigation of practical integrity monitoring systems with rigorous mathematical and statistical concepts and approaches. Major contributions of this research are: • Rigorous integrity and continuity risk analysis for aircraft precision approach. Based on the joint probability density function of the affecting components, the integrity and continuity risks of aircraft precision approach with DGPS were computed. This advanced the conventional method of allocating the risk probability. • A theoretical study of RAIM test power. This is the first time a theoretical study on RAIM test power based on the probability statistical theory has been presented, resulting in a new set of RAIM criteria. • Development of a GPS integrity monitoring and DGPS quality control system based on GPS reference station. A prototype of GPS integrity monitoring and DGPS correction prediction system has been developed and tested, based on the A USN A V GPS base station on the roof of QUT ITE Building.