901 resultados para Numismatics of Greece.
Resumo:
This study presents geo-scientific evidence for Holocene tsunami impact along the shores of the Eastern Ionian Sea. Cefalonia Island, the Gulf of Kyparissia and the Gialova Lagoon were subject of detailed geo-scientific investigations. It is well known that the coasts of the eastern Mediterranean were hit by the destructive influence of tsunamis in the past. The seismically highly active Hellenic Trench is considered as the most significant tsunami source in the Eastern Ionian Sea. This study focuses on the reconstruction and detection of sedimentary signatures of palaeotsunami events and their influence on the Holocene palaeogeographical evolution. The results of fine grained near coast geo-archives are discussed and interpreted in detail to differentiate between tsunami, storm and sea level highstands as sedimentation processes.rnA multi-method approach was applied using geomorphological, sedimentological, geochemical, geophysical and microfaunal analyses to detect Holocene tsunamigenic impact. Chronological data were based on radiocarbondatings and archaeological age estimations to reconstruct local geo-chronostratigraphies and to correlate them on supra-regional scales.rnDistinct sedimentary signatures of 5 generations of tsunami impact were found along the coasts of Cefalonia in the Livadi coastal plain. The results show that the overall coastal evolution was influenced by tsunamigenic impact that occured around 5700 cal BC (I), 4250 cal BC (II), at the beginning of the 2nd millennium cal BC (III), in the 1st millennium cal BC (IV) and posterior to 780 cal AD (V). Sea level reconstructions and the palaeogeographical evolution show that the local Holocene sea level has never been higher than at present.rnAt the former Mouria Lagoon along the Gulf of Kyparissia almost four allochtonous layers of tsunamigenic origin were identified. The stratigraphical record and palaeogeographical reconstructions show that major environmental coastal changes were linked to these extreme events. At the southern end of the Agoulenitsa Lagoon at modern Kato Samikon high-energy traces were found more than 2 km inland and upt ot 9 m above present sea level. The geo-chronological framework deciphered tsunami landfall for the 5th millennium cal BC (I), mid to late 2nd mill. BC (II), Roman times (1st cent. BC to early 4th cent. AD) (III) and most possible one of the historically well-known 365 AD or 521/551 AD tsunamis (IV).rnCoarse-grained allochthonous sediments of marine origin were found intersecting muddy deposits of the quisecent sediments of the Gialova Lagoon on the southwestern Peloponnese. Radiocarbondatings suggest 6 generations of major tsunami impact. Tsunami generations were dated to around 3300 cal BC (I), around the end of 4th and the beginning of 3rd millennium BC (II), after around 1100 cal BC (III), after the 4th to 2nd cent. BC (IV), between the 8th and early 15th cent. AD (V) and between the mid 14th to beginning of 15th cent. AD (VI). Palaeogeographical and morphological characteristics in the environs of the Gialova Lagoon were controlled by high-energy influence.rnSedimentary findings in all study areas are in good accordance to traces of tsunami events found all over the Ionian Sea. The correlation of geo-chronological data fits very well to coastal Akarnania, the western Peloponnese and finding along the coasts of southern Italy and the Aegean. Supra-regional influence of tsunamigenic impact significant for the investigated sites. The palaeogeographical evolution and palaeo-geomorphological setting of the each study area was strongly affected by tsunamigenic impact.rnThe selected geo-archives represent extraordinary sediment traps for the reconstruction of Holocene coastal evolution. Our result therefore give new insight to the exceptional high tsunami risk in the eastern Mediterranean and emphasize the underestimation of the overall tsunami hazard.
Resumo:
Since historical times, coastal areas throughout the eastern Mediterranean are exposed to tsunami hazard. For many decades the knowledge about palaeotsunamis was solely based on historical accounts. However, results from timeline analyses reveal different characteristics affecting the quality of the dataset (i.e. distribution of data, temporal thinning backward of events, local periodization phenomena) that emphasize the fragmentary character of the historical data. As an increasing number of geo-scientific studies give convincing examples of well dated tsunami signatures not reported in catalogues, the non-existing record is a major problem to palaeotsunami research. While the compilation of historical data allows a first approach in the identification of areas vulnerable to tsunamis, it must not be regarded as reliable for hazard assessment. Considering the increasing economic significance of coastal regions (e.g. for mass tourism) and the constantly growing coastal population, our knowledge on the local, regional and supraregional tsunami hazard along Mediterranean coasts has to be improved. For setting up a reliable tsunami risk assessment and developing risk mitigation strategies, it is of major importance (i) to identify areas under risk and (ii) to estimate the intensity and frequency of potential events. This approach is most promising when based on the analysis of palaeotsunami research seeking to detect areas of high palaeotsunami hazard, to calculate recurrence intervals and to document palaeotsunami destructiveness in terms of wave run-up, inundation and long-term coastal change. Within the past few years, geo-scientific studies on palaeotsunami events provided convincing evidence that throughout the Mediterranean ancient harbours were subject to strong tsunami-related disturbance or destruction. Constructed to protect ships from storm and wave activity, harbours provide especially sheltered and quiescent environments and thus turned out to be valuable geo-archives for tsunamigenic high-energy impacts on coastal areas. Directly exposed to the Hellenic Trench and extensive local fault systems, coastal areas in the Ionian Sea and the Gulf of Corinth hold a considerably high risk for tsunami events, respectively.Geo-scientific and geoarcheaological studies carried out in the environs of the ancient harbours of Krane (Cefalonia Island), Lechaion (Corinth, Gulf of Corinth) and Kyllini (western Peloponnese) comprised on-shore and near-shore vibracoring and subsequent sedimentological, geochemical and microfossil analyses of the recovered sediments. Geophysical methods like electrical resistivity tomography and ground penetrating radar were applied in order to detect subsurface structures and to verify stratigraphical patterns derived from vibracores over long distances. The overall geochronological framework of each study area is based on radiocarbon dating of biogenic material and age determination of diagnostic ceramic fragments. Results presented within this study provide distinct evidence of multiple palaeotsunami landfalls for the investigated areas. Tsunami signatures encountered in the environs of Krane, Lechaion and Kyllini include (i) coarse-grained allochthonous marine sediments intersecting silt-dominated quiescent harbour deposits and/or shallow marine environments, (ii) disturbed microfaunal assemblages and/or (iii) distinct geochemical fingerprints as well as (iv) geo-archaeological destruction layers and (v) extensive units of beachrock-type calcarenitic tsunamites. For Krane, geochronological data yielded termini ad or post quem (maximum ages) for tsunami event generations dated to 4150 ± 60 cal BC, ~ 3200 ± 110 cal BC, ~ 650 ± 110 cal BC, and ~ 930 ± 40 cal AD, respectively. Results for Lechaion suggest that the harbour was hit by strong tsunami impacts in the 8th-6th century BC, the 1st-2nd century AD and in the 6th century AD. At Kyllini, the harbour site was affected by tsunami impact in between the late 7th and early 4th cent. BC and between the 4th and 6th cent. AD. In case of Lechaion and Kyllini, the final destruction of the harbour facilities also seems to be related to the tsunami impact. Comparing the tsunami signals obtained for each study areas with geo-scientific data from palaeotsunami events from other sites indicates that the investigated harbour sites represent excellent geo-archives for supra-regional mega-tsunamis.
Resumo:
The Adriatic Sea is considered a feeding and developmental area for Mediterranean loggerhead turtles, but this area is severely threatened by human impacts. In the Adriatic Sea loggerhead turtles are often found stranded or floating, but they are also recovered as by-catch from fishing activities. Nevertheless, information about population structuring and origin of individuals found in the Adriatic Sea are still limited. Cooperation with fishermen and a good network of voluntary collaborators are essential for understanding their distribution, ecology and for developing conservation strategies in the Adriatic Sea. In this study, a comparative analysis of biometric data and DNA sequence polymorphism of the long fragment of the mitochondrial control region was carried out on ninety-three loggerheads recovered from three feeding areas in the Adriatic Sea: North-western, North-eastern and South Adriatic. Differences in turtles body sizes (e.g. Straight Carapace Length) among the three recovery areas and relationship between SCL and the type of recovery were investigated. The origin of turtles from Mediterranean rookeries and the use of the Adriatic feeding habitats by loggerheads in different life-stages were assessed to understand the migratory pathway of the species. The analysis of biometric data revealed a significant difference in turtle sizes between the Southern and the Northern Adriatic. Moreover, size of captured turtles resulted significantly different from the size of stranded and floating individuals. Actually, neritic sub-adults and adults are more affected by incidental captures than juveniles because of their feeding behavior. The Bayesian mixed-stock analysis showed a strong genetic relationship between the Adriatic aggregates and Mediterranean rookeries, while a low pro¬portion of individuals of Atlantic origin were detected in the Adriatic feeding grounds. The presence of migratory pathways towards the Adriatic Sea due to the surface current system was reinforced by the finding of individuals bearing haplotypes endemic to the nesting populations of Libya, Greece and Israel. A relatively high contribution from Turkey and Cyprus to the Northwest and South Adriatic populations was identified when the three sampled areas were analyzed independently. These results have to be taken in account in a conservative perspective, since coastal hazards, affecting the population of turtles feeding in the Adriatic Sea may also affect the nesting populations of the Eastern Mediterranean with a unique genetic pattern.
Resumo:
We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.
Resumo:
We report four epidemiologically unrelated cases of KPC-carrying Klebsiella pneumoniae identified in Switzerland between May 2009 and November 2010. Three cases were transferred from Italy (two KPC-3, one KPC-2) and one from Greece (KPC-2). Resistance to colistin and doxycycline emerged in one KPC-3-carrying K. pneumoniae strain during therapy. These results demonstrate ongoing dissemination of KPC throughout Europe. Rapid and reliable identification of KPC and implementation of control measures is essential to limit spread.
Resumo:
Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.
Resumo:
Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Glycopeptide dendrimers are being developed for inhibition of pathogen adhesion to host cells, a process mediated by carbohydrate-lectins interactions. Such compounds could be used in the treatment of infections by pathogenic bacteria such as Pseudomonas aeruginosa that can be resistant to known antibiotics. Pseudomonas aeruginosa produces two lectins, the fucose binding LecB and the galactose binding LecA. Both lectins have been shown to be virulence factors, involved in cell adhesion and biofilms formation. Screening combinatorial libraries of fucosylated peptide dendrimers led to the glycopeptide dendrimer (C-Fuc-LysProLeu)4(LysPheLysIle)2 LysHisIleNH2. This dendrimer binds the lectin LecB with submicromolar IC50 and shows potent inhibition of P. aeruginosa biofilms for both the laboratory strain PAO1 and for clinical isolates [1]. Appending the peptide dendrimer portion of FD2 with galactosy endgroups gave galactosylpeptide dendrimers as potent ligands for LecA which also act as biofilm inhibitors. Structure-activity relationship studies demonstrated that multivalency was essential for strong binding and biofilm inhibition. [2]The results open the way to develop therapeutic agents based on glycopeptide dendrimers. Peptide dendrimers with antimicrobial properties and good cell penetration are other applications of dendritic peptides we are now investigating.
Resumo:
To determine longitudinal changes in trabecular volumetric BMD (vBMD) at tibia and radius in young depressive patients under antidepressants using pQCT.
Resumo:
Systems for indoor positioning using radio technologies are largely studied due to their convenience and the market opportunities they offer. The positioning algorithms typically derive geographic coordinates from observed radio signals and hence good understanding of the indoor radio channel is required. In this paper we investigate several factors that affect signal propagation indoors for both Bluetooth and WiFi. Our goal is to investigate which factors can be disregarded and which should be considered in the development of a positioning algorithm. Our results show that technical factors such as device characteristics have smaller impact on the signal than multipath propagation. Moreover, we show that propagation conditions differ in each direction. We also noticed that WiFi and Bluetooth, despite operating in the same radio band, do not at all times exhibit the same behaviour.