926 resultados para Nonlinear regularity
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
García et al. present a class of column generation (CG) algorithms for nonlinear programs. Its main motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be achieved, in much the same way as for the classic simplicial decomposition method; the main practical motivation is that within the class there are certain nonlinear column generation problems that can accelerate the convergence of a solution approach which generates a sequence of feasible points. This algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of these methods given in [1] with an experimental study focused on their computational efficiency. Three types of numerical experiments are conducted. The first group of test problems has been designed to study the parameters involved in these methods. The second group has been designed to investigate the role and the computation of the prolongation of the generated columns to the relative boundary. The last one has been designed to carry out a more complete investigation of the difference in computational efficiency between linear and nonlinear column generation approaches. In order to carry out this investigation, we consider two types of test problems: the first one is the nonlinear, capacitated single-commodity network flow problem of which several large-scale instances with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second one is a combined traffic assignment model
Resumo:
The nonlinear streamwise growth of a spanwise periodic array of steady streaks in a flat plate boundary layer is numerically computed using the well known Reduced Navier-Stokes formulation. It is found that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-spanwise plane), which is normally not considered, becomes non-negligible in the nonlinear regime, and it strongly distorts the streamwise velocity profiles, which end up being quite different from those predicted by the linear theory. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks, and compare them with available experimental results.
Resumo:
In laser-plasma experiments, we observed that ion acceleration from the Coulomb explosion of the plasma channel bored by the laser, is prevented when multiple plasma instabilities such as filamentation and hosing, and nonlinear coherent structures (vortices/post-solitons) appear in the wake of an ultrashort laser pulse. The tailoring of the longitudinal plasma density ramp allows us to control the onset of these insabilities. We deduced that the laser pulse is depleted into these structures in our conditions, when a plasma at about 10% of the critical density exhibits a gradient on the order of 250 {\mu}m (gaussian fit), thus hindering the acceleration. A promising experimental setup with a long pulse is demonstrated enabling the excitation of an isolated coherent structure for polarimetric measurements and, in further perspectives, parametric studies of ion plasma acceleration efficiency.
Resumo:
The acoustic backscatter of encapsulated gas-filled microbubbles immersed in a weak compressible liquid and irradiated by ultrasound fields of moderate to high pressure amplitudes is investigated theoretically. The problem is formulated by considering, for the viscoelastic shell of finite thickness, an isotropic hyperelastic neo-Hookean model for the elastic contribution in addition to a Newtonian viscous component. First and second harmonic scattering cross-sections have been evaluated and the quantitative influence of the driving pressure amplitude on the harmonic resonance frequencies for different initial equilibrium bubble sizes and for different encapsulating physical properties has been determined. Conditions for optimal second harmonic imaging have been also investigated and some regions in the parameters space where the second harmonic intensity is dominant over the fundamental have been identified. Results have been obtained for albumin, lipid and polymer encapsulating shells, respectively.
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.
Resumo:
The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.
Resumo:
This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
We present a novel approach for the detection of severe obstructive sleep apnea (OSA) based on patients' voices introducing nonlinear measures to describe sustained speech dynamics. Nonlinear features were combined with state-of-the-art speech recognition systems using statistical modeling techniques (Gaussian mixture models, GMMs) over cepstral parameterization (MFCC) for both continuous and sustained speech. Tests were performed on a database including speech records from both severe OSA and control speakers. A 10 % relative reduction in classification error was obtained for sustained speech when combining MFCC-GMM and nonlinear features, and 33 % when fusing nonlinear features with both sustained and continuous MFCC-GMM. Accuracy reached 88.5 % allowing the system to be used in OSA early detection. Tests showed that nonlinear features and MFCCs are lightly correlated on sustained speech, but uncorrelated on continuous speech. Results also suggest the existence of nonlinear effects in OSA patients' voices, which should be found in continuous speech.
Resumo:
n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.
Resumo:
In this paper we present a continuum theory for large strain anisotropic elastoplasticity based on a decomposition of the modified plastic velocity gradient into energetic and dissipative parts. The theory includes the Armstrong and Frederick hardening rule as well as multilayer models as special cases even for large strain anisotropic elastoplasticity. Texture evolution may also be modelled by the formulation, which allows for a meaningful interpretation of the terms of the dissipation equation
Resumo:
The nonlinear streamwise growth of a spanwise periodic array of steady streaks in a flat plate boundary layer is numerically computed using the well known Reduced Navier- Stokes formulation. It is found that the flow configuration changes substantially when the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-spanwise plane), which is normally not considered, becomes non-negligible in the nonlinear regime, and it strongly distorts the streamwise velocity profiles, which end up being quite different from those predicted by the linear theory. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks, and compare them with available experimental results.
Resumo:
The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.
Resumo:
The influence of a strong, high‐frequency electric field on the ion‐ion correlations in a fully ionized plasma is investigated in the limit of infinite ion mass, starting with the Bogoliubov‐Born‐Green‐Kirkwood‐Yvon hierarchy of equations; a significant departure from the thermal correlations is found. It is shown that the above effect may substantially modify earlier results on the nonlinear high‐frequency plasma conductivity.