981 resultados para Nonlinear portal frame dynamics
Resumo:
Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.
Resumo:
Background: Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST).
Methodology/Principal Findings: Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.
Conclusions/Significance: In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection.
Resumo:
Establishing how invasive species impact upon pre-existing species is a fundamental question in ecology and conservation biology. The greater white-toothed shrew (Crocidura russula) is an invasive species in Ireland that was first recorded in 2007 and which, according to initial data, may be limiting the abundance/distribution of the pygmy shrew (Sorex minutus), previously Ireland’s only shrew species. Because of these concerns, we undertook an intensive live-trapping survey (and used other data from live-trapping, sightings and bird of prey pellets/nest inspections collected between 2006 and 2013) to model the distribution and expansion of C. russula in Ireland and its impacts on Ireland’s small mammal community. The main distribution range of C. russula was found to be approximately 7,600 km2 in 2013, with established outlier populations suggesting that the species is dispersing with human assistance within the island. The species is expanding rapidly for a small mammal, with a radial expansion rate of 5.5 km/yr overall (2008–2013), and independent estimates from live-trapping in 2012–2013 showing rates of 2.4–14.1 km/yr, 0.5–7.1 km/yr and 0–5.6 km/yr depending on the landscape features present. S. minutus is negatively associated with C. russula. S. minutus is completely absent at sites where C. russula is established and is only present at sites at the edge of and beyond the invasion range of C. russula. The speed of this invasion and the homogenous nature of the Irish landscape may mean that S. minutus has not had sufficient time to adapt to the sudden appearance of C. russula. This may mean the continued decline/disappearance of S. minutus as C. russula spreads throughout the island.
Resumo:
The Bronze Age in Britain was a time of major social and cultural changes, reflected in the division of the landscape into field systems and the establishment of new belief systems and ritual practices. Several hypotheses have been advanced to explain these changes, and assessment of many of them is dependent on the availability of detailed palaeoenvironmental data from the sites concerned. This paper explores the development of a later prehistoric landscape in Orkney, where a Bronze Age field system and an apparently ritually-deposited late Bronze Age axe head are located in an area of deep blanket peat from which high-resolution palaeoenvironmental sequences have been recovered. There is no indication that the field system was constructed to facilitate agricultural intensification, and it more likely reflects a cultural response to social fragmentation associated with a more dispersed settlement pattern. There is evidence for wetter conditions during the later Bronze Age, and the apparent votive deposit may reflect the efforts of the local population to maintain community integrity during a time of perceptible environmental change leading to loss of farmland. The study emphasises the advantages of close integration of palaeoenvironmental and archaeological data for interpretation of prehistoric human activity. The palaeoenvironmental data also provide further evidence for the complexity of prehistoric woodland communities in Orkney, hinting at greater diversity than is often assumed. Additionally, differing dates for woodland decline in the two sequences highlight the dangers of over-extrapolation from trends observed in a single pollen profile, even at a very local scale.
Resumo:
The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.
Resumo:
We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.
Resumo:
The nonlinear scattering of two Gaussian pulses with different central frequencies incident at slant angles on the periodic stack of binary semiconductor layers has been modelled in the self-consistent problem formulation taking into account the dynamics of charges. The effects of the pump pulse length and central frequencies, and the stack physical and geometrical parameters on the properties of the emitted combinatorial frequency waveforms are analysed and discussed.
Resumo:
The paper presents a conceptual discussion of the characterisation and phenomenology of passive intermodulation (PIM) by the localised and distributed nonlinearities in passive devices and antennas. The PIM distinctive nature and its impact on signal distortions are examined in comparison with similar effects in power amplifiers. The main features of PIM generation are discussed and illustrated by the example of PIM due to electro-thermal nonlinearity. The issues of measurement, discrimination and modelling of PIM generated by nonlinearities in passive RF components and antennas are addressed.
Resumo:
We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.
Resumo:
We consider the local order estimation of nonlinear autoregressive systems with exogenous inputs (NARX), which may have different local dimensions at different points. By minimizing the kernel-based local information criterion introduced in this paper, the strongly consistent estimates for the local orders of the NARX system at points of interest are obtained. The modification of the criterion and a simple procedure of searching the minimum of the criterion, are also discussed. The theoretical results derived here are tested by simulation examples.