816 resultados para Nonlinear optical


Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este proyecto se analizaron las características y el modo de operación de las fibras ópticas plásticas en un enlace óptico WDM (Wavelenght Division Multiplexing) operando en el espectro visible. Se estudiaron los componentes activos y pasivos necesarios para el enlace, como son las fuentes LED, multiplexores, filtros y acopladores. Se analizaron los efectos no lineales que se pueden presentar en la fibra óptica, y que son importantes de considerar al transmitir señales WDM. Para respaldar el análisis se simuló en MATLAB un enlace óptico en el dominio de la frecuencia utilizando fuentes LED que emiten en el espectro visible, junto con multiplexores WDM, filtros de absorción, acopladores y como medio de transmisión la Fibra Óptica Plástica (POF -Plastic Optical Fiber).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input- output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. © 2015 Optical Society of America.