834 resultados para Nitrogenio - Adsorção
Resumo:
The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel
Resumo:
In this study, was used a very promising technique called of pyrolysis, which can be used for obtaining products with higher added value. From oils and residues, since the contribution of heavier oils and residues has intensified to the world refining industry, due to the growing demand for fuel, for example, liquid hydrocarbons in the range of gasoline and diesel. The catalytic pyrolysis of vacuum residues was performed with the use of a mesoporous material belonging the M41S family, which was discovered in the early 90s by researchers Mobil Oil Corporation, allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal arrangement of mesopores with pore diameters between 2 and 10 nm and a high specific surface area, making it very promising for use as a catalyst in petroleum refining for catalytic cracking, and their mesopores facilitate the access of large hydrocarbon molecules. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more positive for application in the petrochemical industry. The mesoporous material of the type Al-MCM41 (ratio Si / Al = 50) was synthesized by hydrothermal method starting from the silica gel, NaOH and distilled water added to the gel pseudobohemita synthesis. Driver was used as structural CTMABr. Removal of organic driver (CTMABr) was observed by TG / DTG and FTIR, but this material was characterized by XRD, which was observed the formation of the main peaks characteristic of mesoporous materials. The analysis of adsorption / desorption of nitrogen this material textural parameters were determined. The vacuum residues (VR's) that are products of the bottom of the vacuum distillation tower used in this study are different from oil fields (regions of Ceará and Rio de Janeiro). Previously characterized by various techniques such as FTIR, viscosity, density, SARA, elemental analysis and thermogravimetry, which was performed by thermal and catalytic degradation of vacuum residues. The effect of AlMCM-41 was satisfactory, since promoted a decrease in certain ranges of temperature required in the process of conversion of hydrocarbons, but also promoted a decrease in energy required in the process. Thus enabling lower costs related to energy expenditure from degradation during processing of the waste
Resumo:
The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials
Resumo:
Modeling transport of particulate suspensions in porous media is essential for understanding various processes of industrial and scientific interest. During these processes, particles are retained due to mechanisms like size exclusion (straining), adsorption, sedimentation and diffusion. In this thesis, a mathematical model is proposed and analytical solutions are obtained. The obtained analytic solutions for the proposed model, which takes pore and particle size distributions into account, were applied to predict the particle retention, pore blocking and permeability reduction during dead-end microfiltration in membranes. Various scenarios, considering different particle and pore size distributions were studied. The obtained results showed that pore blocking and permeability reduction are highly influenced by the initial pore and particle size distributions. This feature was observed even when different initial pore and particle size distributions with the same average pore size and injected particle size were considered. Finally, a mathematical model for predicting equivalent permeability in porous media during particle retention (and pore blocking) is proposed and the obtained solutions were applied to study permeability decline in different scenarios
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Planaltina, Mestrado em Ciências de Materias, 2016.
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
The hydrothermal carbonization can be considered an environmental friendly process for the production of carbon materials with tailored properties, such as regular porous structure and specific surface chemistry. This process is easy to perform and uses mild temperatures without the use of solvents or gases, which results in a positive environmental balance when compared with the usual pyrolysis process [1]. Diabetes affects more than 152 million people in Europe and is on the rise all over the World. Metformin is one of the most used drugs to treat type 2 diabetes. This drug is an endocrine disruptor with a potential negative impact in the environment due to the fact that metformin is almost not metabolized in the human body and the incorrect disposal into the domestic garbage. Another relevant aspect is the danger of overdose intake of the drug that can lead to lactic acidosis, which in extreme cases can be lethal. The work now reported study the in vitro adsorption of metformin onto activated carbons using simulated gastric and intestinal fluids.
Resumo:
As questões ambientais e de saúde pública estão cada vez mais presentes na agenda internacional. Em particular as consequências indesejadas da utilização de pesticidas na agricultura, em países em desenvolvimento, são um dos tópicos de maior atenção tanto ao nível político, social como científico [1]. Entre as técnicas mais utilizadas para a redução ou remoção destes poluentes a partir de águas contaminadas (naturais, consumo ou residuais) está a adsorção recorrendo a carvões ativados [2]. Esta estratégia ganha importância quando é possível valorizar os desperdícios de recursos endógenos de cada região. Este trabalho segue esta linha, pela via do aproveitamento de desperdícios lenhocelulósicos de origem angolana na produção de carvões ativados para utilização na remoção de um pesticida de largo espectro de aplicação na agricultura.
Resumo:
O desenvolvimento de materiais de carbono continua a ser, na atualidade, uma das áreas de grande interesse junto das comunidades científica e industrial [1]. Especial atenção é dada à valorização de resíduos da indústria, de baixo valor económico, tentando desta forma resolver problemas de gestão de grandes quantidades de desperdícios [2]. De especial relevo destacamos os resíduos potencialmente perigosos, segundo os dados da FAO – Food and Agriculture Organization das Nações Unidas [3]. O desenvolvimento de novos materiais para a indústria do mobiliário, substitutos da madeira, tem gerado uma enorme diversidade de produtos mas também de resíduos. Os mais comuns no mercado são os materiais compósitos, entre eles o PB – ParticleBoard e o MDF – Medium Density Fibreboard, os quais registam um aumento de consumo na Europa de 1,3% e 4,3%, respetivamente, mesmo em período de crise económica como a que estamos a atravessar [3]. O presente trabalho tem como objetivo o estudo do potencial destes resíduos para a produção de carvões ativados (CA) em formas monolíticas, gerando um produto com um elevado valor acrescentado e com características inovadoras para a posterior aplicação em processos de adsorção.
Resumo:
O atenolol é um fármaco β-bloqueador normalmente encontrado em águas residuais devido à incapacidade que os processos convencionais de tratamento destas águas têm em removê-lo. Neste trabalho foram utilizados microcosmos de leitos construídos de macrófitas de fluxo sub-superficial utilizando uma matriz de argila expandida (LECA) e plantados com Phragmites australis para avaliar a sua capacidade em remover atenolol das águas residuais. Para a detecção e quantificação do atenolol em soluções aquosas (águas e efluentes) desenvolveu-se e optimizou-se uma metodologia analítica usando separação cromatográfica por HPLC e detecção espectrofotométrica por diode array (HPLC-DAD) ou por ultravioleta visível (HPLC-UV-Vis). Desenvolveu-se também um procedimento de limpeza e concentração de amostra por extracção em fase sólida (SPE), o qual foi utilizado sempre que as concentrações do analito se encontraram abaixo dos limites de quantificação do equipamento. A utilização desta metodologia de HPLC, combinada com uma eficaz pré-concentração por SPE, resultou num método analítico com um limite de quantificação muito reduzido (9 ngmL-1) e elevada reprodutibilidade (RSD<4%). A eficiência de remoção de atenolol pelos sistemas de macrófitas estudados foi de 93% após um tempo de retenção de 4 dias. Foram testados leitos só com LECA e com LECA e plantas para remoção do atenolol. Nos leitos só com LECA, a cinética de remoção foi caracterizada por um rápido passo inicial (uma remoção de aproximadamente 75% após apenas 24 h), o qual é frequentemente atribuído à adsorção na matriz de LECA. A remoção de atenolol nos leitos de LECA continuou a aumentar de forma constante até ao final do ensaio (8 dias), sendo, contudo cerca de 5-10% mais baixo do que o valor observado nos leitos das plantas após os 4 primeiros dias. Para o tempo de retenção de 4 dias a maioria do atenolol é removido pela matriz de LECA, porém um acréscimo de cerca de 12-14% relativamente à eficiência de remoção global pode ser atribuído às plantas (Phragmites australis), o que está de acordo com trabalhos anteriormente publicados. Apesar de ser necessário realizar mais testes utilizando sistemas em larga escala, de modo a conseguir avaliar totalmente o comportamento do atenolol num sistema de leitos construídos de macrófitas, o presente estudo apresenta a possibilidade de aplicar este tipo de sistemas, relativamente baratos, no tratamento de águas residuais contaminadas com atenolol. ABSTRACT: Atenolol is a β-blocker drug commonly found in wastewaters due to the inability of the conventional wastewater treatment processes to remove it. ln this study, subsurface flow constructed wetland microscosm systems have been established with a matrix of light expanded clay aggregates (LECA) and planted with Phragmites australis in order to evaluate their ability to remove atenolol from wastewater. For the detection and quantification of atenolol in aqueous solutions (water and wastewater), an adequate analytical methodology was developed and optimized using chromatographic separation by HPLC and diode array (DAD) or UV-Vis spectrophotometric detection. A sample clean-up and preconcentration procedure by solid phase extraction (SPE) was also developed for use whenever the concentration levels of the analyte were below the instrument's limit of quantification. Combined with an efficient SPE concentration step, the use of HPLC yielded an analytical method for atenolol quantification with very low LOQ (9 ngmL-1) and high reproducibility (RSD< 4%). Overall atenolol removal efficiency of 93% was achieved after a retention time of only 4 days with the microcosm systems planted with Phragmites australis. The removal kinetics was characterized by an initial fast step (removal of about 75% after just 24h) which is mainly attributable to adsorption on the LECA matrix. Atenolol removal in LECA beds continues to increase in a steady pace up to the end of the assay (8 days) being nevertheless about 5-l 0% lower than those observed in the planted beds after the first 4 days. For the retention time of 4 days most of the atenolol is removed by the LECA matrix but an additional 12-14% to the overall removal efficiency can be attributed to the Phragmites plants, which comes in agreement with other published reports. Despite the fact that further tests using larger scale systems are required to fully evaluate the atenolol behavior in a constructed wetland system, this study points out to the possible application of these low-cost wastewater systems to treat atenolol contaminated wastewater.
Resumo:
Activated carbon (AC) has proved to be an effective adsorbent for the removal of an assortment of organic and inorganic pollutants from aqueous or gaseous media. However, the pursuit for more effective and cheaper AC is still very active and a diversity of textural and chemical treatments are described as a way to expand their applications. It is well known that the surface area and surface chemistry of AC strongly affect their adsorption capacity [1-3]. In particular, an increase in the nitrogen content has been related to an increase of the basic character and also to the development of the porous structure. In most published work this was achieved through an AC post treatment, including either a reaction with nitrogen containing reagents, such as ammonia, nitric acid, or a diversity of amines. However, the AC prepared directly from a nitrogen rich precursor through a physical or chemical activation is referred to as presenting the best characteristics, namely high nitrogen content, high basic character, low nitrogen leaching and also a good thermal stability [4]. To improve the AC adsorption capacities for acidic pesticide removal from the aqueous phase, we intend to improve the porous structure and introduce nitrogenated groups directly into the AC matrix, using different co-adjuvant activating agents as a nitrogen source, by chemical activation, with potassium hydroxide, of cork or poly(ethyleneterephthalate) (PET) precursors.
Resumo:
O objectivo principal deste trabalho de mestrado consistiu em avaliar a potencial utilização de materiais adsorventes, nomeadamente, de carvões activados (AC) preparados por activação química com KOH, a partir de PET reciclado, e de materiais com estrutura mesoporosa ordenada, do tipo MCM-41 e SBA-15, na remoção de ácido 4 - cloro - 2 - metilfenoxiacético (MCPA) e de azul de metileno (MB), presentes nas águas. Nesta tese apresentam-se estudos de preparação e caracterização de materiais micro e mesoporosos e também estudos de avaliação da capacidade adsortiva em fase líquida. Prepararam-se três materiais microporosos, nomeadamente, PET-2-700, PET-2-700ox (AC oxidado) e PET-2-700red (AC reduzido), dois materiais constituídos exclusivamente por mesoporos, Si-MCM-41 e Ti-MCM-41-50 e dois materiais contendo maioritariamente mesoporos, mas que também possuem alguma microporosidade, tais corno, Si-SBA-15 e Ti-SBA-15-50. A caracterização textural dos adsorventes foi inferida por adsorção de azoto a 77K e por de difracção de raios X. Recorreu-se a três métodos de análise das isotérmicas, nomeadamente, Dubinin-Radushkevich, Brunauer-Ernrnett-Teller e alfa-s (as). A caracterização química dos AC foi realizada recorrendo-se a técnicas de análise elementar (AE) e espectroscopia de infravermelho com transformadas de Fourier (FTIR) e à determinação do ponto de carga zero. Os três carvões activados possuem valores de área superficial externa idênticos, o PET-2-700 possui o maior volume microporoso e o PET-2-700ox exibe o maior diâmetro de poros. Por outro lado, o PET-2-700ox possui um carácter fortemente ácido, o PET-2-700 exibe carácter ligeiramente ácido e o PET-2-700red apresenta propriedades ligeiramente alcalinas. Com base na AE, todas as amostras possuem percentagens de carbono elevadas, sendo que o PET-2-700red apresenta o valor mais elevado. Os resultados obtidos para a caracterização estrutural dos revelaram a obtenção de materiais mesoporosos de alta qualidade, definida pela elevada regularidade e uniformidade da estrutura porosa. A análise dos parâmetros de caracterização textura! permitiu inferir que os quatro materiais mesoporosos possuem valores de área superficial elevados, e que os materiais SBA-15 apresentam valores de volume poroso total e de tamanho de poros superiores aos manifestados pelos MCM-41. A incorporação de titânio não conduziu a uma perda significativa de qualidade dos materiais substituídos em relação às correspondentes amostras de sílica. Efectuaram-se estudos de adsorção em fase líquida de forma a avaliar a possível aplicação dos vários adsorventes na remoção de MCPA e de MB de efluentes líquidos. concluiu-se que o tempo de equilíbrio de 72 horas seria adequado e que a capacidade de adsorção dos vários AC era superior em meio ácido. Com base nas isotérmicas de adsorção do MCPA e do MB e na aplicação da representação de Langmuir e de Freundlich, foi possível concluir que o PET-2-700 possui a maior capacidade de adsorção do MCPA, 1.42 mmol/g, enquanto que o PET-2-700ox revelou a maior capacidade de adsorção do MB, 1.43 mmol/g. Na realidade, os materiais microporosos estudados apresentaram percentagens de remoção elevadas, tanto do MCPA como do MB. Relativamente aos materiais mesoporosos ordenados preparados neste trabalho, a percentagem de remoção de para os poluentes em estudo foi relativamente baixa, constatando-se que nesta fase dos estudos não constituem uma alternativa viável à utilização dos AC. No entanto, uma funcionalização criteriosa dos mesmos pode eventualmente proporcionar um aumento da capacidade adsortiva. ABSTRACT: The work presented in this master thesis, consisted of evaluating the potential use of different adsorbents materials, like activated carbon (AC) prepared by chemical activation with KOH, from recycled poly (ethylene terephthalate) (PET) and materials with ordered mesoporous structure such as MCM-41 and SBA-15, for removing acid 4-chlorine-2-metilfenoxiacétic and methylene blue from aqueous phase. We had prepared three microporous materials, PET-200-700, PET-2-700ox (AC oxidized) and PET-2-700red (reduced AC), two materials consisting exclusively of mesopores, Si-MCM-41 and Ti-MCM-41-50 and two materials containing mainly mesopores, but also having some microporosity, such as Si-SBA-15 and Ti-SBA-15-50. The textural characterization of the adsorbents was inferred by nitrogen adsorption at 77K and X-ray diffraction. Three methods were used to analyse the isotherms, namely, Dubinin-Radushkevich, Brunauer-Emmett-Teller and alpha-s (as). The chemical characterization of AC was performed using the elementary analysis, Fourier transform infrared spectroscopy (FTIR) and determination of the point of zero charge. Concerning the AC, the three present almost the same externa! surface area, PET-2-700 has a high micropore volume and PET-2-700ox shows the largest pore size diameter. On the other hand, PET-2-700ox had a strong acid character, PET-2-700 exhibits just a slightly acid character and PET-2-700red presents alkaline properties. The AE analysis allows confirming the high carbon content of theses AC, with PET-2-700red exhibiting the highest carbon proportion. The results from the structural characterization of the mesoporous materials, had disclosed the attainment of materials with high quality, defined by the raised regularity and uniformity of the porous structure. The analysis of the textural parameters allowed inferring that the four studied mesoporous materials possess high superficial area. The SBA-15 type materials present higher values of total porous volume and pores size diameter as the MCM-41. Also, the titanium incorporation did not lead to a significant loss of quality of the materials substituted in relation to the corresponding silica samples. The adsorption studies in liquid phase allow evaluating the possibility of using the different adsorbents for the MCPA and the MB removal. The kinetic studies had allowed to state the equilibrium time as 72 hours and a higher adsorption capacity was achieved in an acid medium. The influence of the pH of the medium, on the MCPA adsorption was evaluated. The MCPA and MB isotherms were analysed based on the Langmuir and Freundlich equation, the representations presented an excellent linearity, indicating the applicability of these equations to these systems. Also, it allows concluded that PET-2-700 had a higher adsorption capacity for MCPA, 1.42 mmol/g, and PET-2-700ox had a higher adsorption capacity for MB, 1.43 mmol/g. The AC used presented high removal percentages for MCPA and MB. Concerning the mesoporous materials prepared in this work, the percentage removal for the pollutants in study was relatively low, and evidencing that at the moment these mesoporous materials do not constitute a viable alternative to the AC. However, an astute funcionalisation of the same ones can, eventually provide an increase of the adsorption capacity.