910 resultados para Networked Virtual Environment
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles, (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
The increasing importance given by environmental policies to the dissemination and use of wind power has led to its fast and large integration in power systems. In most cases, this integration has been done in an intensive way, causing several impacts and challenges in current and future power systems operation and planning. One of these challenges is dealing with the system conditions in which the available wind power is higher than the system demand. This is one of the possible applications of demand response, which is a very promising resource in the context of competitive environments that integrates even more amounts of distributed energy resources, as well as new players. The methodology proposed aims the maximization of the social welfare in a smart grid operated by a virtual power player that manages the available energy resources. When facing excessive wind power generation availability, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. The proposed method is especially useful when actual and day-ahead wind forecast differ significantly. The proposed method has been computationally implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20310 consumers and 548 distributed generators, some of them with must take contracts.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
O cancro colo - rectal (CCR) é um problema de saúde mundial, estando associadas elevadas taxas de mortalidade e morbilidade. A maioria de CCR deriva de pólipos adenomatosos.. Um estudo retrospectivo, efectuado no serviço de Radiologia, dos achados imagiológicos típicos e atípicos, entre Janeiro de 2008 e Junho 2010. A Colonoscopia Virtual, apresenta uma sensibilidade elevada na detecção de lesões, com dimensão superior a 10mm, permitindo um diagnóstico precoce, é um exame rápido, pouco invasivo, não há necessidade de sedação e é efectuada em ambulatório.
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.
Resumo:
The development of renewable energy sources and Distributed Generation (DG) of electricity is of main importance in the way towards a sustainable development. However, the management, in large scale, of these technologies is complicated because of the intermittency of primary resources (wind, sunshine, etc.) and small scale of some plants. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. VPPs can ensure a secure, environmentally friendly generation and optimal management of heat, electricity and cold as well as optimal operation and maintenance of electrical equipment, including the sale of electricity in the energy market. For attaining these goals, there are important issues to deal with, such as reserve management strategies, strategies for bids formulation, the producers’ remuneration, and the producers’ characterization for coalition formation. This chapter presents the most important concepts related with renewable-based generation integration in electricity markets, using VPP paradigm. The presented case studies make use of two main computer applications:ViProd and MASCEM. ViProd simulates VPP operation, including the management of plants in operation. MASCEM is a multi-agent based electricity market simulator that supports the inclusion of VPPs in the players set.
Resumo:
Negotiation is a fundamental tool for reaching understandings that allow each involved party to gain an advantage for themselves by the end of the process. In recent years, with the increasing of compe-titiveness in most sectors, negotiation procedures become present in practically all of them. One particular environment in which the competitiveness has been increasing exponentially is the electricity markets sector. This work is directed to the study of electricity markets’ partici-pating entities interaction, namely in what concerns the formation, management and operation of aggregating entities – Virtual Power Players (VPPs). VPPs are responsible for managing coalitions of market players with small market negotiating influence, which take strategic advantage in entering such aggregations, to increase their negotiating power. This chapter presents a negotiation methodology for the creation and management of coalitions in Electricity Markets. This approach is tested using MASCEM, taking advantage of its ability to provide the means to model and simulate VPPs. VPPs are represented as coalitions of agents, with the capability of negotiating both in the market, and internally, with their members, in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself.
Resumo:
Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.