921 resultados para Natural health products
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Vols. 3-9 edited by W.A. Davis and Samuel S. Sadtler.
Resumo:
Mode of access: Internet.
Resumo:
"September 18, 1986"--pt. 2.
Resumo:
Shipping list no.: 2000-0219-P (pt. 1), 2000-0328-P (pt. 2), 2001-0124-P (pt. 3).
Resumo:
"Publication no. 96-4."
Resumo:
We investigated whether allied health assessments carried out via videoconferencing were comparable to assessments carried out face to face. Five allied health therapists (in dietetics, occupational therapy, physiotherapy, podiatry and speech pathology) conducted an assessment of 12 high-dependency residents both face to face and by videoconferencing. On a five-point Likert scale, the therapists' mean ratings for the efficiency and suitability of videoconferencing for assessment were significantly lower than for face to face. Their mean rating for the adequacy of their care plans was also significantly lower for videoconferencing than for face to face. However, in each case the dietician's assessments did not differ significantly between the two modalities. In 35 cases out of 60, two independent raters agreed that the therapists' care plans after the videoconferencing and face-to-face assessments were the same. However, the level of agreement between raters was only moderate (kappa=0.31). Despite the therapists' (natural) preference for face-to-face working, care plans formulated via videoconferencing were reasonably similar to those formulated in face-to-face assessment. Allied health assessments carried out by videoconferencing would therefore seem to be feasible.
Resumo:
Some methoxylated polybrominated diphenyl ethers (MeO-BDEs) are known halogenated natural products (HNPs) and are frequently detected in higher organisms of the marine environment. In this study we demonstrate that a prominent MeO-BDE, previously detected in marine mammals from Australia, is identical to 3,5-dibromo-2-(2',4'-dibromo)phenoxyanisole(BC-3,6-MeO-BDE47). Up to 1.9mg/ kg of 6-MeO-BDE 47 was present in cetaceans from Australia, 0.2-0.3 mg/kg in two crocodile eggs from Australia, but concentrations of 1 or 2 orders of magnitude lower were found in shark liver oil from New Zealand and in marine mammals from Africa and the Antarctic. Concentrations of 6-MeO-BDE47 in samples from Australia were in the same range as anthropogenic pollutants such as PCB 153 and p,p'-DDE. Along with 6-MeO-BDE 47 and the known HNP 4,6-dibromo-2-(2',4'-dibromo)phenoxyanisole (BC-2,2'-MeO-BDE 68), several tribromophenoxyanisoles (MeO-triBDE) were present in tissue of Australian cetaceans. To determine their structure, abiotic debromination experiments were performed using 6-MeO-BDE 47 and 2'-MeO-BDE 68 and superreduced di cyanocobalamine. These experiments resulted in formation of eight MeO-triBDEs, all of which were detected in the cetacean samples. Five of these eight MeO-triBDEs could be identified based on two standard compounds as well as gas chromatographic and mass spectrometric features. It was also shown that the first eluting isomer (compound 1), 6-MeO-BDE 17 (compound 2), and 2-MeO-BDE 39 (compound 5) were the most prominent MeO-triBDEs in the Australian cetacean samples. The concentrations of the MeO-triBDEs in two cetacean samples were 0.20 and 0.36 mg/kg, respectively. Although the reductive debromination with dicyanocobalamine resulted in a different congener pattern than was found in the marine mammals, it could not be excluded that the tribromo congeners of 6-MeO-BDE 47 and 2'-MeO-BDE 68 in the samples were metabolites of the latter.
Resumo:
Blooms of Lyngbya majuscula have been reported with increasing frequency and severity in the last decade in Moreton Bay, Australia. A number of grazers have been observed feeding upon this toxic cyanobacterium. Differences in sequestration of toxic compounds from L. majuscula were investigated in two anaspideans, Stylocheilus striatus, Bursatella leachii, and the cephalaspidean Diniatys dentifer. Species fed a monospecific diet of L. majuscula had different toxin distribution in their tissues and excretions. A high concentration of lyngbyatoxin-a was observed in the body of S. striatus (3.94 mg/kg(-1)) compared to bodily secretions (ink 0.12 mg/kg- 1; fecal matter 0.56 mg/kg(-1); eggs 0.05 mg/kg(-1)). In contrast, B. leachii secreted greater concentrations of lyngbyatoxin-a (ink 5.41 mg/kg(-1); fecal matter 6.71 mg/kg(-1)) than that stored in the body (2.24 mg/kg(-1)). The major internal repository of lyngbyatoxin-a and debromoaplysiatoxin was the digestive gland for both S. striatus (6.31 +/- 0.31 mg/kg(-1)) and B. leachii (156.39 +/- 46.92 mg/kg(-1)). D. dentifer showed high variability in the distribution of sequestered compounds. Lyngbyatoxin-a was detected in the digestive gland (3.56 +/- 3.56 mg/kg(-1)) but not in the head and foot, while debromoaplysiatoxin was detected in the head and foot (133.73 +/- 129.82 mg/kg(-1)) but not in the digestive gland. The concentrations of sequestered secondary metabolites in these animals did not correspond to the concentrations found in L. majuscula used as food for these experiments, suggesting it may have been from previous dietary exposure. Trophic transfer of debromoaplysiatoxin from L. majuscula into S. striatus is well established; however, a lack of knowledge exists for other grazers. The high levels of secondary metabolites observed in both the anaspidean and the cephalapsidean species suggest that these toxins may bioaccumulate through marine food chains.
Resumo:
An Eryus sp. of marine sponge from the Great Australian Bight has yielded the first reported natural occurrence of a cyclonucleoside, N-3,5'-cycloxanthosine. The structure of N-3,5'-cycloxanthosine was confirmed by detailed spectroscopic analysis and total synthesis.
Resumo:
Branched chain fatty acids are substrates for cytochrome P450(BM3) (CYP102) from Bacillus megaterium; oxidation of C-15 and C-17 iso and anteiso fatty acids by P450(BM3) leads to the formation of hydroxylated products that possess high levels of regiochemical and stereochemical purity.