986 resultados para National Science Foundation (U.S.). Office of Polar Programs
Resumo:
A systematic study of the pi(-)/pi(+) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the pi(-)/pi(+) ratio in head-on collisions of Ca-48 + Ca-48, Sn-124 + Sn-124, and Au-197 + Au-197 at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the pi(-)/pi(+) ratio as well as their time evolution and spatial distributions demonstrates clearly that the pi(-)/pi(+) ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
Single-crystalline spinel (MgAl2O4) specimens were implanted with helium ions of 100 keV at three successively increasing fluences of (0.5, 2.0 and 8.0) x 10(16) ions/cm(2) at room temperature. The specimens were subsequently annealed in vacuum at different temperatures ranging from 500 to 1100 degrees C. Different techniques, including Fourier transformed infrared spectroscopy (FTIR), thermal desorption spectrometry (TDS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to investigate the specimens, It was found that the absorbance peak in the FTIR due to the stretching vibration of the Al-O bond shifts to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with an increase of annealing temperature. The absorbance peak shift has a linear relationship with the fluence increase in the as-implanted state, while it does not have a linear relationship with the fluence increase after the annealing process. Surface deformation occurred in the specimens implanted with fluences of 2.0 and 8.0 x 10(16) ions/cm(2) in the annealing process. The phenomena described above can be attributed to differences in defect formation in the specimens. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The basic process of an exotic decay mode namely P-delayed fission is simply introduced. The progress status of the study in the world is essentialized. The observation of P-delayed fission of Ac-228 is reported. The radium was radiochemically separated from natural thorium. Thin Ra sources in which Ac-228 was got through Ra-228 ->(beta-) Ac-228 were prepared for observing fission fragments from beta-delayed fission Ac-228. They exposed to the mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2) x 10(-12).
Resumo:
Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.
Resumo:
In this paper, we estimate the inputs of phosphorus (P) to the Yangtze River Basin and exports of dissolved inorganic phosphorus (DIP) from the river to the estuary for the period 1970-2003, by using the global NEWS-DIP model. Modeled DIP yields range from 2.5 kg P km(-2) yr(-1) in 1970 to 4.6 kg P km(-2) yr(-1) in 1985, and then dramatically increase to 14.1 kg P km(-2) yr(-1) in 2003. No significant difference between the modeled and measured values at the level of P = 0.05 is observed. The study also demonstrates variable source contributions of P to the modeled DIP during the period 1970-2003. Point sewage P input accounted for approximately 100% in the period 1970-1985 and substantially decreased to 24.8% in 2003. Chemical fertilizer contributed 25.4% of DIP yields in 1986 and increased continuously to 50.3% in 2003, while a stable trend in manure P contribution averaging 22.9% of DIP yields was shown in the same period. The study concludes that P inputs to the Yangtze River Basin and the river DIP export to the estuary have substantially increased during the study period consequence to human pressure.
Resumo:
With the wide application of rare earth in agriculture, medicament, especially the application of Gd-DTPA as nuclear magnetic resonance image reagent in clinical practice([1]), the studies on the toxicology in biological body, as well as the study on the use as informative probes instead of divalent calcium ion in biological and biochemical research have attracted intensive concern([2]). Phospholipids bilayers have served as a model of biomembrane in the last two decades. The effects of metal ions on the conformation of polar headgroup of dipalmitoylphosphatidylcholine (DPPC) bilayers have been reported([3]). Sphingomyelin is major component of several biological tissues such as brain and nerve cells and has identical polar headgroup to DPPC. The interaction of metal ions with sphingomyelin bilayer remains nonrevealed. This note presents the results of the study on this aspect.
Resumo:
针对具有时变不确定性且不确定性界为椭球的线性系统提出了一种新的具有自适应机制的鲁棒保性能控制器设计方法。首先,引入一个具有可由自适应律在线调整的可调参数的目标模型,通过该参数来保证由目标模型与被控模型所获得的误差系统渐近稳定。结合保证目标模型稳定性的设计,最终形成保证闭环系统稳定且控制器增益仿射依赖于可调参数的鲁棒保性能跟踪控制器。应用于安装在试验平台上的小型直升机航向控制中,仿真试验表明了该方法的有效性。
Resumo:
National Science Foundation of China (No. 10032040 and No. 49874013) and Joint Earthquake Science Foundation of China (No. 101119).
Resumo:
This memo describes the initial results of a project to create a self-supervised algorithm for learning object segmentation from video data. Developmental psychology and computational experience have demonstrated that the motion segmentation of objects is a simpler, more primitive process than the detection of object boundaries by static image cues. Therefore, motion information provides a plausible supervision signal for learning the static boundary detection task and for evaluating performance on a test set. A video camera and previously developed background subtraction algorithms can automatically produce a large database of motion-segmented images for minimal cost. The purpose of this work is to use the information in such a database to learn how to detect the object boundaries in novel images using static information, such as color, texture, and shape. This work was funded in part by the Office of Naval Research contract #N00014-00-1-0298, in part by the Singapore-MIT Alliance agreement of 11/6/98, and in part by a National Science Foundation Graduate Student Fellowship.
Resumo:
R.J. DOUGLAS, Non-existence of polar factorisations and polar inclusion of a vector-valued mapping. Intern. Jour. Of Pure and Appl. Math., (IJPAM) 41, no. 3 (2007).
Resumo:
High-intensity focused ultrasound is a form of therapeutic ultrasound which uses high amplitude acoustic waves to heat and ablate tissue. HIFU employs acoustic amplitudes that are high enough that nonlinear propagation effects are important in the evolution of the sound field. A common model for HIFU beams is the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation which accounts for nonlinearity, diffraction, and absorption. The KZK equation models diffraction using the parabolic or paraxial approximation. Many HIFU sources have an aperture diameter similar to the focal length and the paraxial approximation may not be appropriate. Here, results obtained using the “Texas code,” a time-domain numerical solution to the KZK equation, were used to assess when the KZK equation can be employed. In a linear water case comparison with the O’Neil solution, the KZK equation accurately predicts the pressure field in the focal region. The KZK equation was also compared to simulations of the exact fluid dynamics equations (no paraxial approximation). The exact equations were solved using the Fourier-Continuation (FC) method to approximate derivatives in the equations. Results have been obtained for a focused HIFU source in tissue. For a low focusing gain transducer (focal length 50λ and radius 10λ), the KZK and FC models showed excellent agreement, however, as the source radius was increased to 30λ, discrepancies started to appear. Modeling was extended to the case of tissue with the appropriate power law using a relaxation model. The relaxation model resulted in a higher peak pressure and a shift in the location of the peak pressure, highlighting the importance of employing the correct attenuation model. Simulations from the code that were compared to experimental data in water showed good agreement through the focal plane.
Resumo:
Stabilized micron-sized bubbles, known as contrast agents, are often injected into the body to enhance ultrasound imaging of blood flow. The ability to detect such bubbles in blood depends on the relative magnitude of the acoustic power backscattered from the microbubbles (‘signal’) to the power backscattered from the red blood cells (‘noise’). Erythrocytes are acoustically small (Rayleigh regime), weak scatterers, and therefore the backscatter coefficient (BSC) of blood increases as the fourth power of frequency throughout the diagnostic frequency range. Microbubbles, on the other hand, are either resonant or super-resonant in the range 5-30 MHz. Above resonance, their total scattering cross-section remains constant with increasing frequency. In the present thesis, a theoretical model of the BSC of a suspension of red blood cells is presented and compared to the BSC of Optison® contrast agent microbubbles. It is predicted that, as the frequency increases, the BSC of red blood cell suspensions eventually exceeds the BSC of the strong scattering microbubbles, leading to a dramatic reduction in signal-to-noise ratio (SNR). This decrease in SNR with increasing frequency was also confirmed experimentally by use of an active cavitation detector for different concentrations of Optison® microbubbles in erythrocyte suspensions of different hematocrits. The magnitude of the observed decrease in SNR correlated well with theoretical predictions in most cases, except for very dense suspensions of red blood cells, where it is hypothesized that the close proximity of erythrocytes inhibits the acoustic response of the microbubbles.
Resumo:
Unstable arterial plaque is likely the key component of atherosclerosis, a disease which is responsible for two-thirds of heart attacks and strokes, leading to approximately 1 million deaths in the United States. Ultrasound imaging is able to detect plaque but as of yet is not able to distinguish unstable plaque from stable plaque. In this work a scanning acoustic microscope (SAM) was implemented and validated as tool to measure the acoustic properties of a sample. The goal for the SAM is to be able to provide quantitative measurements of the acoustic properties of different plaque types, to understand the physical basis by which plaque may be identified acoustically. The SAM consists of a spherically focused transducer which operates in pulse-echo mode and is scanned in a 2D raster pattern over a sample. A plane wave analysis is presented which allows the impedance, attenuation and phase velocity of a sample to be de- termined from measurements of the echoes from the front and back of the sample. After the measurements, the attenuation and phase velocity were analysed to ensure that they were consistent with causality. The backscatter coefficient of the samples was obtained using the technique outlined by Chen et al [8]. The transducer used here was able to determine acoustic properties from 10-40 MHz. The results for the impedance, attenuation and phase velocity were validated for high and low-density polyethylene against published results. The plane wave approximation was validated by measuring the properties throughout the focal region and throughout a range of incidence angles from the transducer. The SAM was used to characterize a set of recipes for tissue-mimicking phantoms which demonstrate indepen- dent control over the impedance, attenuation, phase velocity and backscatter coefficient. An initial feasibility study on a human artery was performed.
Resumo:
We give an explicit and easy-to-verify characterization for subsets in finite total orders (infinitely many of them in general) to be uniformly definable by a first-order formula. From this characterization we derive immediately that Beth's definability theorem does not hold in any class of finite total orders, as well as that McColm's first conjecture is true for all classes of finite total orders. Another consequence is a natural 0-1 law for definable subsets on finite total orders expressed as a statement about the possible densities of first-order definable subsets.
Resumo:
A well-known paradigm for load balancing in distributed systems is the``power of two choices,''whereby an item is stored at the less loaded of two (or more) random alternative servers. We investigate the power of two choices in natural settings for distributed computing where items and servers reside in a geometric space and each item is associated with the server that is its nearest neighbor. This is in fact the backdrop for distributed hash tables such as Chord, where the geometric space is determined by clockwise distance on a one-dimensional ring. Theoretically, we consider the following load balancing problem. Suppose that servers are initially hashed uniformly at random to points in the space. Sequentially, each item then considers d candidate insertion points also chosen uniformly at random from the space,and selects the insertion point whose associated server has the least load. For the one-dimensional ring, and for Euclidean distance on the two-dimensional torus, we demonstrate that when n data items are hashed to n servers,the maximum load at any server is log log n / log d + O(1) with high probability. While our results match the well-known bounds in the standard setting in which each server is selected equiprobably, our applications do not have this feature, since the sizes of the nearest-neighbor regions around servers are non-uniform. Therefore, the novelty in our methods lies in developing appropriate tail bounds on the distribution of nearest-neighbor region sizes and in adapting previous arguments to this more general setting. In addition, we provide simulation results demonstrating the load balance that results as the system size scales into the millions.