906 resultados para NITRATE MEASUREMENTS
Resumo:
Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P < 0.001). A small improvement in the aortic pulse wave velocity (i.e., a decrease of 0.22 m/s; 95% CI: −0.4, −0.3 m/s) was evident in the nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P < 0.05) but no significant changes in unstimulated expression. No adverse effects of dietary nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P < 0.01). The proportions of 78 bacterial taxa were different after the nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P < 0.01) increased after nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a preventative strategy against atherogenesis in larger cohorts. This trial was registered at clinicaltrials.gov as NCT01493752.
Resumo:
We compare measurements of integrated water vapour (IWV) over a subarctic site (Kiruna, Northern Sweden) from five different sensors and retrieval methods: Radiosondes, Global Positioning System (GPS), ground-based Fourier-transform infrared (FTIR) spectrometer, ground-based microwave radiometer, and satellite-based microwave radiometer (AMSU-B). Additionally, we compare also to ERA-Interim model reanalysis data. GPS-based IWV data have the highest temporal coverage and resolution and are chosen as reference data set. All datasets agree reasonably well, but the ground-based microwave instrument only if the data are cloud-filtered. We also address two issues that are general for such intercomparison studies, the impact of different lower altitude limits for the IWV integration, and the impact of representativeness error. We develop methods for correcting for the former, and estimating the random error contribution of the latter. A literature survey reveals that reported systematic differences between different techniques are study-dependent and show no overall consistent pattern. Further improving the absolute accuracy of IWV measurements and providing climate-quality time series therefore remain challenging problems.
Resumo:
Collocations between two satellite sensors are occasions where both sensors observe the same place at roughly the same time. We study collocations between the Microwave Humidity Sounder (MHS) on-board NOAA-18 and the Cloud Profiling Radar (CPR) on-board CloudSat. First, a simple method is presented to obtain those collocations and this method is compared with a more complicated approach found in literature. We present the statistical properties of the collocations, with particular attention to the effects of the differences in footprint size. For 2007, we find approximately two and a half million MHS measurements with CPR pixels close to their centrepoints. Most of those collocations contain at least ten CloudSat pixels and image relatively homogeneous scenes. In the second part, we present three possible applications for the collocations. Firstly, we use the collocations to validate an operational Ice Water Path (IWP) product from MHS measurements, produced by the National Environment Satellite, Data and Information System (NESDIS) in the Microwave Surface and Precipitation Products System (MSPPS). IWP values from the CloudSat CPR are found to be significantly larger than those from the MSPPS. Secondly, we compare the relation between IWP and MHS channel 5 (190.311 GHz) brightness temperature for two datasets: the collocated dataset, and an artificial dataset. We find a larger variability in the collocated dataset. Finally, we use the collocations to train an Artificial Neural Network and describe how we can use it to develop a new MHS-based IWP product. We also study the effect of adding measurements from the High Resolution Infrared Radiation Sounder (HIRS), channels 8 (11.11 μm) and 11 (8.33 μm). This shows a small improvement in the retrieval quality. The collocations described in the article are available for public use.
Resumo:
We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1° of freedom per altitude level). We take partial columns between roughly 5 and 30 km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10 km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ± 3 × 1022 molecules cm−2. Expressed as median ± median absolute deviation (expressed in absolute or relative terms), these differences are 0.11 ± 9.60 × 10^20 molecules cm−2 (0.012 ± 1.018 %) for TANSO-FTS–PEARL-FTS, −2.6 ± 2.6 × 10^21 molecules cm−2 (−1.6 ± 1.6 %) for ACE-FTS–PEARL-FTS, and 7.4 ± 6.0 × 10^20 molecules cm−2 (0.78 ± 0.64 %) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.
Resumo:
Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose-response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4-10.9 mg/kg bw) or nitrate (0.1-10 mg/kg bw). To study flavanol-nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.
Resumo:
Cosmic ray fluxes in the atmosphere were recorded during balloon flights in October 2014 in northern Murmansk region, Apatity (Russia; 67o33’N, 33o24’E), in Antarctica (observatory Mirny; 66o33’S, 93o00’E), in Moscow (Russia; 55o45’N, 37o37’E), in Reading (United King-dom; 51o27’N, 0o 58’W), in Mitzpe-Ramon (Israel; 30o36’N, 34o48’E) and in Zaragoza (Spain; 41o9’N, 0o54’W). Two type of cosmic ray detectors were used, namely, (1) the standard ra-diosonde and its modification constructed at the Lebedev Physical Institute (Moscow, Russia) and (2) the device manufactured at the Reading University (Reading, United Kingdom). We compare and analyze obtained data and focus on the estimation of the cosmic ray latitudinal effect in the atmosphere.
Resumo:
Upper tropospheric and lower stratospheric measurements from the Aura Microwave Limb Sounder (MLS), the Aura High Resolution Dynamics Limb Sounder (HIRDLS), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS) are used to present the first global climatological comparison of extratropical, nonpolar trace gas distributions in double-tropopause (DT) and single-tropopause (ST) regions. Stratospheric tracers, O3, HNO3, and HCl, have lower mixing ratios ∼2–8 km above the primary (lowermost) tropopause in DT than in ST regions in all seasons, with maximum Northern Hemisphere (NH) differences near 50% in winter and 30% in summer. Southern Hemisphere winter differences are somewhat smaller, but summer differences are similar in the two hemispheres. H2O in DT regions of both hemispheres shows strong negative anomalies in November through February and positive anomalies in July through October, reflecting the strong seasonal cycle in H2O near the tropical tropopause. CO and other tropospheric tracers examined have higher DT than ST values 2–7 km above the primary tropopause, with the largest differences in winter. Large DT-ST differences extend to high NH latitudes in fall and winter, with longitudinal maxima in regions associated with enhanced wave activity and subtropical jet variations. Results for O3 and HNO3 agree closely between MLS and HIRDLS, and differences from ACE-FTS are consistent with its sparse and irregular midlatitude sampling. Consistent signatures in climatological trace gas fields provide strong evidence that transport from the tropical upper troposphere into the layer between double tropopauses is an important pathway for stratosphere-troposphere exchange.
Resumo:
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud.Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20th March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse.The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming the sensing surface becomes normal to the solar beam direction at a maximum swing. Both approaches, essentially independent,give values that agree with theoretical expectations for the eclipse-induced radiation changes.
Resumo:
The field campaign LOFZY 2005 (LOFoten ZYklonen, engl.: Cyclones) was carried out in the frame of Collaborative Research Centre 512, which deals with low-pressure systems (cyclones) and the climate system of the North Atlantic. Cyclones are of special interest due to their influence on the interaction between atmosphere and ocean. Cyclone activity in the northern part of the Atlantic Ocean is notably high and is of particular importance for the entire Atlantic Ocean. An area of maximum precipitation exists in front of the Norwegian Lofoten islands. One aim of the LOFZY field campaign was to clarify the role cyclones play in the interaction of ocean and atmosphere. In order to obtain a comprehensive dataset of cyclone activity and ocean-atmosphere interaction a field experiment was carried out in the Lofoten region during March and April 2005. Employed platforms were the Irish research vessel RV Celtic Explorer which conducted a meteorological (radiosondes, standard parameters, observations) and an oceanographic (CTD) program. The German research aircraft Falcon accomplished eight flight missions (between 4-21 March) to observe synoptic conditions with high spatial and temporal resolution. In addition 23 autonomous marine buoys were deployed in advance of the campaign in the observed area to measure drift, air-temperature and -pressure and water-temperature. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Celtic Explorer
Resumo:
The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.
Resumo:
Since 2004, the satellite-borne Ozone Mapping Instrument (OMI) has observed sulphur dioxide (SO2) plumes during both quiescence and effusive eruptive activity at Soufrière Hills Volcano, Montserrat. On average, OMI detected a SO2 plume 4-6 times more frequently during effusive periods than during quiescence in the 2008-2010 period. The increased ability of OMI to detect SO2 during eruptive periods is mainly due to an increase in plume altitude rather than a higher SO2 emission rate. Three styles of eruptive activity cause thermal lofting of gases (Vulcanian explosions; pyroclastic flows; a hot lava dome) and the resultant plume altitudes are estimated from observations and models. Most lofting plumes from Soufrière Hills are derived from hot domes and pyroclastic flows. Although Vulcanian explosions produced the largest plumes, some produced only negligible SO2 signals detected by OMI. OMI is most valuable for monitoring purposes at this volcano during periods of lava dome growth and during explosive activity.
Resumo:
This paper describes new advances in the exploitation of oxygen A-band measurements from POLDER3 sensor onboard PARASOL, satellite platform within the A-Train. These developments result from not only an account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions but also, and more importantly, from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train: CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained, which are estimates of actual cloud top and middle pressures (CTP and CMP). Performances of CTOP and CMOP are presented by class of clouds following the ISCCP classification. In 2008, the coefficient of the correlation between CMOP and CMP is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and CTP is 0.75, 0.73, and 0.79 for the same cloud types. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of inferred value and for a given error, is higher than the one of MODIS CTP estimate. Scores of CTOP are the highest for bin value of CTP superior in numbers. For liquid (ice) clouds and an error of 30 hPa (50 hPa), the score of CTOP reaches 50% (70%). From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent h is possible. A second estimate of h comes from the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent. This correlation is studied in detail in the case of liquid clouds. It is shown to be spatially and temporally robust, except for clouds above land during winter months. The analysis of the correlation's dependence on the scene's characteristics leads to a parameterization providing h from σPO2. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. POLDER estimates of the cloud geometrical thickness obtain a global score of 50% confidence for a relative error of 20% (40%) of the estimate for ice (liquid) clouds over ocean. These results need to be validated outside of the CALIPSO/CloudSat track.
Resumo:
We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2σPO2 of PO2PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are needed