955 resultados para NEUTRON ABSORBERS
Resumo:
We show that it is possible to implement soft superweak CP violation in the context of a 3-3-1 model with only three triplets. All CP violation effects come from the exchange of singly and doubly charged scalars. We consider the implication of this mechanism in the quark and lepton sectors. In particular it is shown that, in this model, as in most of those which incorporate scalar mediated CP violation, it is possible to have large electric dioole moments for the muon and the tau lepton while keeping small those of the electron and neutron. The CKM mixing matrix is real at the tree level but gets a phase at the 1-up loop level. ©1999 The American Physical Society.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
It is shown that three-body non-Borromean halo nuclei like 12Be, 18C, 20C, considered as neutron-neutron-core systems, have p-wave virtual states with energy of about 1.7 times the corresponding neutron-core binding energy. We use a renormalizable model that guarantees the general validity of our results in the context of short range interactions.
Resumo:
We discuss the possible influence of gravity in the neutronization process p+e-→νe, which is particularly important as a cooling mechanism of neutron stars. Our approach is semiclassical in the sense that leptonic fields are quantized on a classical background spacetime, while neutrons and protons are treated as excited and unexcited nucleon states, respectively. We expect gravity to have some influence wherever the energy content carried by the in state is barely above the neutron mass. In this case the emitted neutrinos would be soft enough to have a wavelength of the same order as the space curvature radius. ©2000 The American Physical Society.
Resumo:
A quantitative phase analysis was made of LixCoO2 powders obtained by two distinct chemical methodologies at different temperatures (from 400 to 700°C). A phase analysis was made using Rietveld refinements based on X-ray diffraction data, considering the Li xCoO2 powders as a multiphase system that simultaneously contained two main phases with distinct, layered and spinel-type structures. The results showed the coexistence of both structures in LixCoO 2 obtained at low temperature (400 and 500°C), although only the layered structure was detected at higher temperatures (600 and 700°C), regardless of the chemical powder process employed. The electrochemical performance, evaluated mainly by the cycling reversibility of Li xCoO2 in the form of cathode insertion electrodes, revealed that there is a close correlation between structural features and the electrochemical response, with one of the redox processes (3.3 v/3.9 v) associated only with the presence of the spinel-type structure. © 2003 Elsevier B.V. All rights reserved.
Resumo:
We show that Σ+ hyperons produced by 800 GeV/c protons on targets of Be and Cu have significant polarizations (15-20%). These polarizations persist at values of pt = 2 GeV/c and a wide range of xF. The polarizations from the Cu target are consistently less than from Be. The average ratio of the Σ+ polarization from Cu to that from Be is 0.68 ± 0.08.
Resumo:
Polycrystalline Nd1-xEuxNiO3 (0≤x≤0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at ∼1000 °C under oxygen pressures as high as 80bar. X-ray diffraction (XRD) and neutron powder diffraction (NPD), electrical resistivity ρ(T), and magnetization M(T) measurements were performed on these compounds. The NPD and XRD results indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group Pbnm. The analysis of the structural parameters revealed a sudden and small expansion of ∼0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of ∼0.003 of the average Ni-O distance and a simultaneous decrease of ∼-0.5° of the Ni-O-Ni superexchange angle. The ρ(T) measurements revealed a MI transition occurring at temperatures ranging from TMI∼193 to 336K for samples with x ≤ 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3 during heating and cooling processes, suggesting a first-order character of the phase transition at TMI. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd 0.7Eu0.3NiO3. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first-order character of the transition in NdNiO3. © 2006 IOP Publishing Ltd.
Resumo:
We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data. © 2007 American Institute of Physics.
Resumo:
We report a renormalized zero-range interaction approach to estimate the size of generic weakly bound three-body systems where two particles are identical. We present results for the neutron-neutron root-mean-square distances of the halo nuclei 6He, 11Li, 14Be and 20C, where the systems are taken as two halo neutrons with an inert point-like core. We also report an approach to obtain the neutron-neutron correlation function in halo nuclei. In this case, our results suggest a review of the corresponding experimental data analysis. © 2007 American Institute of Physics.
Resumo:
The pCT deals with relatively thick targets like the human head or trunk. Thus, the fidelity of pCT as a tool for proton therapy planning depends on the accuracy of physical formulas used for proton interaction with thick absorbers. Although the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is about 1%, the analytical calculations and the Monte Carlo simulations with codes like TRIM/SRIM, MCNPX and GEANT4 do not agreed with each other. A tentative to validate the codes against experimental data for thick absorbers bring some difficulties: only a few data is available and the existing data sets have been acquired at different initial proton energies, and for different absorber materials. In this work we compare the results of our Monte Carlo simulations with existing experimental data in terms of reduced calibration curve, i.e. the range - energy dependence normalized on the range scale by the full projected CSDA range for given initial proton energy in a given material, taken from the NIST PSTAR database, and on the final proton energy scale - by the given initial energy of protons. This approach is almost energy and material independent. The results of our analysis are important for pCT development because the contradictions observed at arbitrary low initial proton energies could be easily scaled now to typical pCT energies. © 2010 American Institute of Physics.
Resumo:
We consider some existing relativistic models for the nucleon structure functions, relying on statistical approaches instead of perturbative ones. These models are based on the Fermi-Dirac distribution for the confined quarks, where a density of energy levels is obtained from an effective confining potential. In this context, it is presented some results obtained with a recent statistical quark model for the sea-quark asymmetry in the nucleon. It is shown, within this model, that experimental available observables, such as the ratio and difference between proton and neutron structure functions, are quite well reproduced with just three parameters: two chemical potentials used to reproduce the valence up and down quark numbers in the nucleon, and a temperature that is being used to reproduce the Gottfried sum rule violation. © 2010 American Institute of Physics.
Resumo:
The GEANT4 simulations are essential for the development of medical tomography with proton beams pCT. In the case of thin absorbers the latest releases of GEANT4 generate very similar final spectra which agree well with the results of other popular Monte Carlo codes like TRIM/SRIM, or MCNPX. For thick absorbers, however, the disagreements became evident. In a part, these disagreements are due to the known contradictions in the NIST PSTAR and SRIM reference data. Therefore, it is interesting to compare the GEANT4 results with each other, with experiment, and with diverse code results in a reduced form, which is free from this kind of doubts. In this work such comparison is done within the Reduced Calibration Curve concept elaborated for the proton beam tomography. © 2010 IEEE.
Resumo:
Within general characteristics of low-energy few-body systems, we revise some well-known correlations found in nuclear physics, and the properties of low-mass halo nuclei in a three-body neutron-neutron-core model. In this context, near the critical conditions for the occurrence of an Efimov state, we report some results obtained for the neutron- 19C elastic scattering. © 2010 American Institute of Physics.
Resumo:
Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. © 2011 American Institute of Physics.
Resumo:
The present paper is a comprehensive study concerning Fe K-edge X-ray absorption spectroscopy (XAS) measurements, which were performed to characterize the local structure of (1 - x)Pb(Fe2/3W1/3)O 3-xPbTiO3 samples as a function of temperature and PbTiO3 content. Results obtained by the fits of extended X-ray absorption fine structure consist with rhombohedral symmetry for Pb(Fe 2/3W1/3)O3 composition at temperatures lower than room temperature. This result is in apparent disagreement with X-ray and neutron diffraction characterization which have been reported. This apparent disagreement is related to the fact that XAS probes the short-range order, whereas X-ray diffraction provides structural information about the average structure. Moreover, as the PbTiO3 content increases, a disorder has been detected at local structure of the FeO6 octahedron. Analysis of X-ray absorption near edge structure spectra did not show modifications in intensity nor energy of transitions. © 2013 American Institute of Physics.