998 resultados para N-term Approximation
Resumo:
The formulation of the carrier-phase momentum and enthalpy source terms in mixed Lagrangian-Eulerian models of particle-laden flows is frequently reported inaccurately. Under certain circumstances, this can lead to erroneous implementations, which violate physical laws. A particle- rather than carrier-based approach is suggested for a consistent treatment of these terms.
Resumo:
In many practical situations, batching of similar jobs to avoid setups is performed while constructing a schedule. This paper addresses the problem of non-preemptively scheduling independent jobs in a two-machine flow shop with the objective of minimizing the makespan. Jobs are grouped into batches. A sequence independent batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. Besides its practical interest, this problem is a direct generalization of the classical two-machine flow shop problem with no grouping of jobs, which can be solved optimally by Johnson's well-known algorithm. The problem under investigation is known to be NP-hard. We propose two O(n logn) time heuristic algorithms. The first heuristic, which creates a schedule with minimum total setup time by forcing all jobs in the same batch to be sequenced in adjacent positions, has a worst-case performance ratio of 3/2. By allowing each batch to be split into at most two sub-batches, a second heuristic is developed which has an improved worst-case performance ratio of 4/3. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
Resumo:
We study two marked point process models based on the Cox process. These models are used to describe the probabilistic structure of the rainfall intensity process. Mathematical formulation of the models is described and some second-moment characteristics of the rainfall depth, and aggregated processes are considered. The derived second-order properties of the accumulated rainfall amounts at different levels of aggregation are used in order to examine the model fit. A brief data analysis is presented. Copyright © 1998 John Wiley & Sons, Ltd.
Resumo:
In this paper, we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid cellulosic fuels. A simple solid fuel combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddy-dissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D. The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment. The model is shown to be able to qualitatively predict behaviors similar to "flashover"—in the case of the open room—and "backdraft"— in the case of the initially closed room.
Resumo:
We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.
Resumo:
We develop a fully polynomial-time approximation scheme (FPTAS) for minimizing the weighted total tardiness on a single machine, provided that all due dates are equal. The FPTAS is obtained by converting an especially designed pseudopolynomial dynamic programming algorithm.
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables.
Resumo:
We consider the problem of scheduling families of jobs in a two-machine open shop so as to minimize the makespan. The jobs of each family can be partitioned into batches and a family setup time on each machine is required before the first job is processed, and when a machine switches from processing a job of some family to a job of another family. For this NP-hard problem the literature contains (5/4)-approximation algorithms that cannot be improved on using the class of group technology algorithms in which each family is kept as a single batch. We demonstrate that there is no advantage in splitting a family more than once. We present an algorithm that splits one family at most once on a machine and delivers a worst-case performance ratio of 6/5.
Resumo:
This paper considers two-machine flow shop scheduling problems with machine availability constraints. When the processing of a job is interrupted by an unavailability period of a machine, we consider both the resumable scenario in which the processing can be resumed when the machine next becomes available, and the semi-resumable scenario in which some portion of the processing is repeated but the job is otherwise resumable. For the problem with several non-availability intervals on the first machine under the resumable scenario, we present a fast (3/2)-approximation algorithm. For the problem with one non-availability interval under the semi-resumable scenario, a polynomial-time approximation scheme is developed.
Resumo:
In this note, we consider the scheduling problem of minimizing the sum of the weighted completion times on a single machine with one non-availability interval on the machine under the non-resumable scenario. Together with a recent 2-approximation algorithm designed by Kacem [I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering 54 (2008) 401–410], this paper is the first successful attempt to develop a constant ratio approximation algorithm for this problem. We present two approaches to designing such an algorithm. Our best algorithm guarantees a worst-case performance ratio of 2+ε. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Stencil printing of solder pastes is a critical stage in the SMT assembly process as a high proportion of the solder-related defects can be attributed to this stage. As the trend towards product miniaturization continues, there is a greater need for better understanding of the rheological behaviour and printing performance of new paste formulations. This fundamental understanding is crucial for achieving the repeatable solder paste deposits from board-to-board and pad-to-pad required for more reliable solder interconnections. The paper concerns a study on the effect of ageing on the rheological characteristics and printing performance of new lead-free solder pastes formulations used for flip-chip assembly applications. The objective is to correlate the rheological characteristics of aged paste samples to their printing performance. The methodology developed can be used for bench-marking new lead-free paste formulations in terms of shelf life, the potential deterioration in rheological characteristics and their printing performance.
Resumo:
The Fal Estuary System in West Cornwall has, over many centuries, received inputs of heavy metals from various mining activities. In this context its most important tributary is the Carnon River. Analyses of organisms from the Fal Estuary have shown that some species contain abnormally high concentrations of Cu, Zn and As, especially those living in Restronguet Creek.