826 resultados para Muscle and tibiotarsus
Resumo:
Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.
Resumo:
The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.