905 resultados para Multi-objective optimization problem
Resumo:
This dissertation analyzes the exploitation of the orbital angular momentum (OAM) of the electromagnetic waves with large intelligent surfaces in the near-field region and line-of-sight conditions, in light of the holographic MIMO communication concept. Firstly, a characterization of the OAM-based communication problem is presented, and the relationship between OAM-carrying waves and communication modes is discussed. Then, practicable strategies for OAM detection using large intelligent surfaces and optimization methods based on beam focusing are proposed. Numerical results characterize the effectiveness of OAM with respect to other strategies, also including the proposed detection and optimization methods. It is shown that OAM waves constitute a particular choice of communication modes, i.e., an alternative basis set, which is sub-optimum with respect to optimal basis functions that can be derived by solving eigenfunction problems. Moreover, even the joint utilization of OAM waves with focusing strategies led to the conclusion that no channel capacity achievements can be obtained with these transmission techniques.
Resumo:
In the metal industry, and more specifically in the forging one, scrap material is a crucial issue and reducing it would be an important goal to reach. Not only would this help the companies to be more environmentally friendly and more sustainable, but it also would reduce the use of energy and lower costs. At the same time, the techniques for Industry 4.0 and the advancements in Artificial Intelligence (AI), especially in the field of Deep Reinforcement Learning (DRL), may have an important role in helping to achieve this objective. This document presents the thesis work, a contribution to the SmartForge project, that was performed during a semester abroad at Karlstad University (Sweden). This project aims at solving the aforementioned problem with a business case of the company Bharat Forge Kilsta, located in Karlskoga (Sweden). The thesis work includes the design and later development of an event-driven architecture with microservices, to support the processing of data coming from sensors set up in the company's industrial plant, and eventually the implementation of an algorithm with DRL techniques to control the electrical power to use in it.
Resumo:
In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, but there are no experimental studies concerning the phenolic compound contents of commercial EVOO. The aim of this work was to optimise the separation of 17 phenolic compounds already detected in EVOO. A Doehlert matrix experimental design was used, evaluating the effects of pH and electrolyte concentration. Resolution, runtime and migration time relative standard deviation values were evaluated. Derringer's desirability function was used to simultaneously optimise all 37 responses. The 17 peaks were separated in 19min using a fused-silica capillary (50μm internal diameter, 72cm of effective length) with an extended light path and 101.3mmolL(-1) of boric acid electrolyte (pH 9.15, 30kV). The method was validated and applied to 15 EVOO samples found in Brazilian supermarkets.
Resumo:
Objective: The biochemical alterations between inflammatory fibrous hyperplasia (IFH) and normal tissues of buccal mucosa were probed by using the FT-Raman spectroscopy technique. The aim was to find the minimal set of Raman bands that would furnish the best discrimination. Background: Raman-based optical biopsy is a widely recognized potential technique for noninvasive real-time diagnosis. However, few studies had been devoted to the discrimination of very common subtle or early pathologic states as inflammatory processes that are always present on, for example, cancer lesion borders. Methods: Seventy spectra of IFH from 14 patients were compared with 30 spectra of normal tissues from six patients. The statistical analysis was performed with principal components analysis and soft independent modeling class analogy cross-validated, leave-one-out methods. Results: Bands close to 574, 1,100, 1,250 to 1,350, and 1,500 cm(-1) (mainly amino acids and collagen bands) showed the main intragroup variations that are due to the acanthosis process in the IFH epithelium. The 1,200 (C-C aromatic/DNA), 1,350 (CH(2) bending/collagen 1), and 1,730 cm(-1) (collagen III) regions presented the main intergroup variations. This finding was interpreted as originating in an extracellular matrix-degeneration process occurring in the inflammatory tissues. The statistical analysis results indicated that the best discrimination capability (sensitivity of 95% and specificity of 100%) was found by using the 530-580 cm(-1) spectral region. Conclusions: The existence of this narrow spectral window enabling normal and inflammatory diagnosis also had useful implications for an in vivo dispersive Raman setup for clinical applications.
Resumo:
The structural engineering community in Brazil faces new challenges with the recent occurrence of high intensity tornados. Satellite surveillance data shows that the area covering the south-east of Brazil, Uruguay and some of Argentina is one of the world most tornado-prone areas, second only to the infamous tornado alley in central United States. The design of structures subject to tornado winds is a typical example of decision making in the presence of uncertainty. Structural design involves finding a good balance between the competing goals of safety and economy. This paper presents a methodology to find the optimum balance between these goals in the presence of uncertainty. In this paper, reliability-based risk optimization is used to find the optimal safety coefficient that minimizes the total expected cost of a steel frame communications tower, subject to extreme storm and tornado wind loads. The technique is not new, but it is applied to a practical problem of increasing interest to Brazilian structural engineers. The problem is formulated in the partial safety factor format used in current design codes, with all additional partial factor introduced to serve as optimization variable. The expected cost of failure (or risk) is defined as the product of a. limit state exceedance probability by a limit state exceedance cost. These costs include costs of repairing, rebuilding, and paying compensation for injury and loss of life. The total expected failure cost is the sum of individual expected costs over all failure modes. The steel frame communications, tower subject of this study has become very common in Brazil due to increasing mobile phone coverage. The study shows that optimum reliability is strongly dependent on the cost (or consequences) of failure. Since failure consequences depend oil actual tower location, it turn,,; out that different optimum designs should be used in different locations. Failure consequences are also different for the different parties involved in the design, construction and operation of the tower. Hence, it is important that risk is well understood by the parties involved, so that proper contracts call be made. The investigation shows that when non-structural terms dominate design costs (e.g, in residential or office buildings) it is not too costly to over-design; this observation is in agreement with the observed practice for non-optimized structural systems. In this situation, is much easier to loose money by under-design. When by under-design. When structural material cost is a significant part of design cost (e.g. concrete dam or bridge), one is likely to lose significantmoney by over-design. In this situation, a cost-risk-benefit optimization analysis is highly recommended. Finally, the study also shows that under time-varying loads like tornados, the optimum reliability is strongly dependent on the selected design life.
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.
Resumo:
Background Data and Objective: There is anecdotal evidence that low-level laser therapy (LLLT) may affect the development of muscular fatigue, minor muscle damage, and recovery after heavy exercises. Although manufacturers claim that cluster probes (LEDT) maybe more effective than single-diode lasers in clinical settings, there is a lack of head-to-head comparisons in controlled trials. This study was designed to compare the effect of single-diode LLLT and cluster LEDT before heavy exercise. Materials and Methods: This was a randomized, placebo-controlled, double-blind cross-over study. Young male volleyball players (n = 8) were enrolled and asked to perform three Wingate cycle tests after 4 x 30 sec LLLT or LEDT pretreatment of the rectus femoris muscle with either (1) an active LEDT cluster-probe (660/850 nm, 10/30mW), (2) a placebo cluster-probe with no output, and (3) a single-diode 810-nm 200-mW laser. Results: The active LEDT group had significantly decreased post-exercise creatine kinase (CK) levels (-18.88 +/- 41.48U/L), compared to the placebo cluster group (26.88 +/- 15.18U/L) (p < 0.05) and the active single-diode laser group (43.38 +/- 32.90U/L) (p<0.01). None of the pre-exercise LLLT or LEDT protocols enhanced performance on the Wingate tests or reduced post-exercise blood lactate levels. However, a non-significant tendency toward lower post-exercise blood lactate levels in the treated groups should be explored further. Conclusion: In this experimental set-up, only the active LEDT probe decreased post-exercise CK levels after the Wingate cycle test. Neither performance nor blood lactate levels were significantly affected by this protocol of pre-exercise LEDT or LLLT.
Resumo:
The reverse engineering problem addressed in the present research consists of estimating the thicknesses and the optical constants of two thin films deposited on a transparent substrate using only transmittance data through the whole stack. No functional dispersion relation assumptions are made on the complex refractive index. Instead, minimal physical constraints are employed, as in previous works of some of the authors where only one film was considered in the retrieval algorithm. To our knowledge this is the first report on the retrieval of the optical constants and the thickness of multiple film structures using only transmittance data that does not make use of dispersion relations. The same methodology may be used if the available data correspond to normal reflectance. The software used in this work is freely available through the PUMA Project web page (http://www.ime.usp.br/similar to egbirgin/puma/). (C) 2008 Optical Society of America
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Multi-pumping flow systems exploit pulsed flows delivered by Solenoid pumps. Their improved performance rely on the enhanced radial mass transport inherent to the pulsed flow, which is a consequence of the establishment of vortices thus a tendency towards turbulent mixing. This paper presents several evidences of turbulent mixing in relation to pulsed flows. such as recorded peak shape, establishment of fluidized beds, exploitation of flow reversal, implementation of relatively slow chemical reactions and/or heating of the reaction medium. In addition, Reynolds number associated with the GO period of a pulsed flow is estimated and photographic images of dispersing samples flowing under laminar regime and pulsed flow conditions are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e. g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.
Resumo:
In this paper, we address the problem of scheduling jobs in a no-wait flowshop with the objective of minimising the total completion time. This problem is well-known for being nondeterministic polynomial-time hard, and therefore, most contributions to the topic focus on developing algorithms able to obtain good approximate solutions for the problem in a short CPU time. More specifically, there are various constructive heuristics available for the problem [such as the ones by Rajendran and Chaudhuri (Nav Res Logist 37: 695-705, 1990); Bertolissi (J Mater Process Technol 107: 459-465, 2000), Aldowaisan and Allahverdi (Omega 32: 345-352, 2004) and the Chins heuristic by Fink and Voa (Eur J Operat Res 151: 400-414, 2003)], as well as a successful local search procedure (Pilot-1-Chins). We propose a new constructive heuristic based on an analogy with the two-machine problem in order to select the candidate to be appended in the partial schedule. The myopic behaviour of the heuristic is tempered by exploring the neighbourhood of the so-obtained partial schedules. The computational results indicate that the proposed heuristic outperforms existing ones in terms of quality of the solution obtained and equals the performance of the time-consuming Pilot-1-Chins.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work is to present an alternative boundary element method (BEM) formulation for the static analysis of three-dimensional non-homogeneous isotropic solids. These problems can be solved using the classical boundary element formulation, analyzing each subregion separately and then joining them together by introducing equilibrium and displacements compatibility. Establishing relations between the displacement fundamental solutions of the different domains, the alternative technique proposed in this paper allows analyzing all the domains as one unique solid, not requiring equilibrium or compatibility equations. This formulation also leads to a smaller system of equations when compared to the usual subregion technique, and the results obtained are even more accurate. (C) 2008 Elsevier Ltd. All rights reserved.